
1/4

September 16, 2021

The C++ implicit assignment operator is a non-ref-
qualified member, even if the base class’s assignment
has a ref-qualifier

devblogs.microsoft.com/oldnewthing/20210916-00

Raymond Chen

Consider the following C++ class:

struct Base

{

 Base& operator=(Base const&) & = default;

 void BaseMethod();

};

This defines a class for which you can assign to an lvalue reference, but not to an rvalue

reference.

extern Base GetBase();

Base b;

b = GetBase(); // allowed

GetBase() = b; // not allowed

Assigning to an rvalue is not generally useful, since the object has no name, and consequently

it is difficult to do anything with the assigned-to object afterward.¹

Great, we got rid of assignment to a temporary, which we’ve seen has been a source of

confusion.

Now consider this:

struct Derived : Base

{

};

Derived d;

Derived() = d; // is this allowed?

https://devblogs.microsoft.com/oldnewthing/20210916-00/?p=105693
https://devblogs.microsoft.com/oldnewthing/20200729-00/?p=104017

2/4

We created a derived class and inherited the assignment operator from it. Do you expect the

inherited assignment operator to block rvalues?

You probably guessed that the answer is no, seeing as I gave it away in the title.

The reason is that I lied when I said that the assignment operator was inherited. It was not

inherited. It was implicitly declared.

The rules for implicit declaration of the copy assignment operator are spelled out in

[class.copy.assign], paragraphs 2 and 4. The short version is that a class is eligible for an

implicitly-declared copy assignment operator if its base classes and non-static members all

have a copy assignment operator. (Analogous rules apply for the implicitly-declared move

assignment operator.)

The catch is that the implicitly-declared copy assignment and move assignment operators are

declared as an unqualified assignment operator, regardless of the reference-qualifications of

the base classes and members. In our example, we get

struct Derived : Base

{

 // compiler autogenerates these

 Derived& operator=(Derived const&) = default;

 // ^ no &

};

The lack of a ref-qualification means that this assignment operator applies equally to lvalues

and rvalues.

Our attempt to block rvalue assignment fails to propagate to derived classes!

In order to repair this, each derived class must redeclare its assignment operator as lvalue-

only.

struct Derived : Base

{

 Derived& operator=(Derived const&) & = default;

};

Oh, we’ve only started our journey down the rabbit-hole.

At least for now, explicitly declaring a copy assignment operator does not cause the

implicitly-declared copy/move constructors to disappear, but the behavior is noted as

deprecated in the C++ language specification, with the note that a future version of the

language may indeed delete them.

Derived d;

Derived d2{ d }; // on borrowed time

https://timsong-cpp.github.io/cppwp/class.copy.assign

3/4

To make sure you don’t run into trouble in the future, you’ll want to declare them explicitly.

struct Derived : Base

{

 Derived(Derived const&) = default;

 Derived(Derived&&) = default;

 Derived& operator=(Derived const&) & = default;

};

Great, we’ve restored the copy and move constructors.

But explicitly declaring any constructors causes us to lose the implicitly-declared default

constructor.

Derived d; // doesn't work any more

We’ll have to bring that back too.

struct Derived : Base

{

 Derived() = default;

 Derived(Derived const&) = default;

 Derived(Derived&&) = default;

 Derived& operator=(Derived const&) & = default;

};

The same exercise applies if we also want to block the move assignment operator to rvalues,

but it’s more urgent because an explicit declaration of a move assignment operator does

delete both the copy and move constructors even in C++20.

struct Base

{

 Base& operator=(Base const&) & = default;

 Base& operator=(Base&&) & = default;

 void BaseMethod();

};

struct Derived : Base

{

 Derived() = default;

 Derived(Derived const&) = default;

 Derived(Derived&&) = default;

 Derived& operator=(Derived const&) & = default;

 Derived& operator=(Derived&&) & = default;

};

Phew, that was annoying.

¹ I mean, I guess you could do this:

4/4

Base b;

Something(GetBase() = b);

(GetBase() = b).BaseMethod();

but it seems pointless to go to the effort of asking GetBase to create you a Base object,

only to overwrite it with your own. You may as well just create your own temporary.

Something(Base(b));

Base(b).BaseMethod();

Or, if you didn’t even mean to create a temporary, just use the original value:

Something(b);

b.BaseMethod();

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

