
1/3

September 15, 2021

How do I set the alpha channel of a GDI bitmap to 255?
devblogs.microsoft.com/oldnewthing/20210915-00

Raymond Chen

Most GDI operations will destroy the alpha channel, because GDI was invented back in the

days of monochrome and CGA, where you had one, maybe two bits per pixel, and the paper

introducing the concept of an alpha channel wouldn’t be published for another year.

Since the alpha channel hadn’t been invented yet, the top eight bits of 32bpp pixel formats

were unused. Whenever GDI needed to generate a 32bpp pixel, say as the result of text

rendering, the results had zero in the top eight bits because, well, the bits had no defined

meaning. And if you thought those bits were your alpha channel, well, you just lost your

alpha channel.

Okay, so you accept that GDI operations are going to wipe out your alpha channel. How do

you get it back, assuming you just want to make your bitmap opaque again?

Fortunately, there’s still a GDI operation that doesn’t destroy the alpha channel: BitBlt .

Probably because BltBlt is defined in terms of bitwise operations, so the work is done

without really thinking about what the bits mean. And we can take advantage of that.

https://devblogs.microsoft.com/oldnewthing/20210915-00/?p=105687
http://graphics.pixar.com/library/Compositing/paper.pdf
https://devblogs.microsoft.com/oldnewthing/20180528-00/?p=98845

2/3

// hdc is a memory DC with a 32bpp bitmap selected into it.

// This function sets the alpha channel to 255 without

// affecting any of the color channels.

void MakeBitmapOpaque(

 HDC hdc, int x, int y, int cx, int cy)

{

 BITMAPINFO bi = {};

 bi.bmiHeader.biSize = sizeof(BITMAPINFOHEADER);

 bi.bmiHeader.biWidth = 1;

 bi.bmiHeader.biHeight = 1;

 bi.bmiHeader.biPlanes = 1;

 bi.bmiHeader.biBitCount = 32;

 bi.bmiHeader.biCompression = BI_RGB;

 RGBQUAD bitmapBits = { 0x00, 0x00, 0x00, 0xFF };

 StretchDIBits(hdc, x, y, cx, cy,

 0, 0, 1, 1, &bitmapBits, &bi,

 DIB_RGB_COLORS, SRCPAINT);

}

The first step is to create a BITMAPINFO structure that describes a 1×1 32bpp bitmap.

We then create that single pixel consisting of an alpha channel (which resides in the reserved

bits) of 255, and zero for the color channels.

And then we ask to stretch that 1×1 bitmap over the destination bitmap, using the

SRCPAINT raster operation.

The secret sauce is that the SRCPAINT raster operation means that the source and

destination should be OR’d together to form the result. Our source pixel is { 0x00, 0x00,

0x00, 0xFF } , so this means that for each destination pixel, the color channels are left

unchanged (OR’d with zero) and the alpha channel is set to 255 (OR’d with 255).

Bingo, this sets the alpha channel of the entire bitmap back to 255.

This lets you use functions like FillRect or DrawText , and let them destroy the alpha

channel of your opaque bitmap. Then come back and repair the alpha channel by setting the

bitmap back to opaque without changing any of the color channels.

This trick makes the specified portion of the bitmap opaque. If you want it to have a different

alpha channel, you could use two StretchBlt operations, one to zero out the alpha

channel, and another to OR in the desired value.

3/3

// hdc is a memory DC with a 32bpp bitmap selected into it.

// This function sets the alpha channel without

// affecting any of the color channels.

void SetBitmapAlphaChannel(

 HDC hdc, int x, int y, int cx, int cy, BYTE alpha)

{

 BITMAPINFO bi = {};

 bi.bmiHeader.biSize = sizeof(BITMAPINFOHEADER);

 bi.bmiHeader.biWidth = 1;

 bi.bmiHeader.biHeight = 1;

 bi.bmiHeader.biPlanes = 1;

 bi.bmiHeader.biBitCount = 32;

 bi.bmiHeader.biCompression = BI_RGB;

 if (alpha != 255) {

 RGBQUAD zeroAlpha = { 0xFF, 0xFF, 0xFF, 0x00 };

 StretchDIBits(hdc, x, y, cx, cy,

 0, 0, 1, 1, &zeroAlpha, &bi,

 DIB_RGB_COLORS, SRCAND);

 }

 RGBQUAD alphaOnly = { 0x00, 0x00, 0x00, alpha };

 StretchDIBits(hdc, x, y, cx, cy,

 0, 0, 1, 1, &alphaOnly, &bi,

 DIB_RGB_COLORS, SRCPAINT);

}

The SRCAND raster operation performs a logical AND of the source and destination. We set

the entire alpha channel to zero by ANDing it with zero, and then we set the value to the

desired value by ORing the new value in. (And we can skip the AND step if the desired alpha

is 255.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

