
1/2

September 13, 2021

The C++/WinRT query_interface_tearoff extension point,
and using it for COM aggregation

devblogs.microsoft.com/oldnewthing/20210913-00

Raymond Chen

The C++/WinRT library’s implements  template does the heavy lifting of implementing

COM classes. One of the extension points is a method called query_interface_tearoff .

This method is called as part of the implementation of the IUnknown::QueryInterface

method if the caller is asking for an interface that wasn’t declared as part of the

implements  type parameter list. This gives you a chance to support additional interfaces.

From its name, it’s apparent that the primary use case for this is COM tear-off interfaces. But

you can use it for any scenario where you want to support an interface that you didn’t list in

your implements . For example, the interface might be dynamically-generated. But today

we’re going to use it for COM aggregation.

Let’s say that we want to aggregate the free-threaded marshaler. Yes, I know that

C++/WinRT does this automatically, but let’s do it manually just to show how it’s done.

struct MyFreeThreaded :

   winrt::implements<MyFreeThreaded, ::IAgileObject, winrt::non_agile>

{

 winrt::IUnknown m_ftm;


 MyFreeThreaded()

 {

   winrt::check_hresult(CoCreateFreeThreadedMarshaler(this, m_ftm.put()));

 }


 int32_t query_interface_tearoff(winrt::guid const& id, void** object)

       const noexcept override

 {

   if (id == winrt::guid_of<::IMarshal>()) {

     return m_ftm.as(id, object);

   }

   return E_NOINTERFACE;

 }

};

https://devblogs.microsoft.com/oldnewthing/20210913-00/?p=105680
https://www.codeguru.com/cpp/com-tech/atl/performance/article.php/c3613/ATL-TearOff-Interfaces.htm
https://docs.microsoft.com/en-us/windows/win32/com/aggregation


2/2

The MyFreeThreaded  object implements IAgileObject , which is a marker interface for

free-threaded objects. It also uses the winrt::non_agile  marker to tell C++/WinRT not to

implement free-threading support for this object. Because we’re about to do it manually!

We declare a member variable m_ftm  which holds the free-threaded marshaler. At

construction we create the free-threaded marshaler passing ourselves as the controlling

unknown. This makes the free-threaded marshaler act as if it were part of our object, and it

will forward all interface requests back to the main object. However, the IUnknown

produced by CoCreateFreeThreadedMarshaler  is a special one that does not delegate its

IUnknown::QueryInterface  method. This lets you access the interfaces of the

aggregated object. (Without it, any attempt to obtain an interface from the aggregated object

would just be forwarded back to the outer object.)

To complete the circle, we forward requests for IMarshal  into the free-threaded marshaler

by overriding query_interface_tearoff . That way, if somebody asks for IMarshal —

and by somebody I mean COM itself—we forward the request into the aggregated object,

which says “Free-threaded marshaler at your service!”

An important detail of implementing your own query_interface_tearoff  is that you

should return E_NOINTERFACE  (or forward to the base class) if you don’t handle the

interface.

That’s a pretty quick rundown of doing COM aggregation in C++/WinRT. It’ll come in handy

in a few months.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

