
1/5

September 10, 2021

Ordering asynchronous updates with coroutines, part 5:
Bowing out via cancellation

devblogs.microsoft.com/oldnewthing/20210910-00

Raymond Chen

Last time, we showed how a coroutine could check after every co_await whether its work

has been superseded, in which case it just gives up rather than proceeding with a calculation

whose result won’t be used anyway.

We noted that a coroutine provider can snoop on every co_await in the coroutine body by

means of the await_transform method. C++/WinRT uses this feature to implement a few

things. One of them is making every co_await check whether the coroutine has been

cancelled and throwing hresult_canceled if so. We can take advantage of this by using

cancellation to stop any existing instance of the coroutine.

winrt::IAsyncAction Widget::RecalcWorkerAsync()

{

 auto lifetime = get_strong();

 auto cancellation = co_await winrt::get_cancellation_token();

 winrt::hstring messageId;

 winrt::hstring lang;

 {

 std::lock_guard guard{ m_mutex };

 messageId = m_messageId;

 lang = m_lang;

 }

 auto resolved = co_await ResolveLanguageAsync(lang);

 auto library = co_await GetResourceLibraryAsync(resolved);

 auto message = library.LookupResourceAsync(messageId);

 std::lock_guard guard{ m_mutex };

 if (!cancellation()) {

 m_message = message;

 }

}

https://devblogs.microsoft.com/oldnewthing/20210910-00/?p=105669
https://devblogs.microsoft.com/oldnewthing/20210428-00/?p=105160

2/5

We move the recalculation into a worker function and rely on cancellation to tell us when to

stop calculating. The C++/WinRT library automatically checks for cancellation at each

co_await so the only explicit check we need is the final one.

The IAsyncAction produced by RecalcWorkerAsync is managed by the RecalcAsync

function:

winrt::IAsyncAction m_pendingAction;

winrt::IAsyncAction Widget::SetPendingAction(

 winrt::IAsyncAction const& action)

{

 winrt::IAsyncAction pendingAction;

 {

 std::lock_guard guard{ m_mutex };

 pendingAction = std::exchange(m_pendingAction, nullptr);

 }

 if (pendingAction) {

 pendingAction.Cancel();

 }

}

winrt::IAsyncAction Widget::RecalcAsync()

{

 auto lifetime = get_strong();

 SetPendingAction(nullptr);

 auto currentAction = RecalcWorkerAsync();

 SetPendingAction(currentAction);

 try {

 co_await currentAction;

 } catch (winrt::hresult_canceled const&) {

 // ignore cancellation

 }

}

There are a few steps here.

Before we start, we cancel the previous operation. The call to Cancel must happen outside

the lock, because the coroutine completion function is invoked synchronously from inside the

Cancel , and we don’t want to let foreign code run while inside our lock.

Next, we start the new operation.

And then we make the new operation become the current operation. There is a race here

where two threads both start a new operation at the same time, in which case we have to

cancel any possible interloper.

3/5

The need for the early cancel stems from this race condition that can occur if we remove the

first call to SetPendingAction :

Thread 1 Thread 2

RecalcWorkerAsync :

 currentAction = RecalcAsync()

 enter lock

 std::exchange(

 m_pendingAction, currentAction)

 exit lock

RecalcAsync :

 co_await

ResolveLanguageAsync(...);

 co_await

GetResourceLibraryAsync(...);

 co_await

LookupResourceAsync(...);

 RecalcWorkerAsync :

 currentAction = RecalcAsync()

 enter lock

 pendingAction = std::exchange(

 m_pendingAction, currentAction)

 exit lock

RecalcAsync :

 co_await

ResolveLanguageAsync(...);

 co_await

GetResourceLibraryAsync(...);

 co_await

LookupResourceAsync(...);

 enter lock

 verify not cancelled
 m_message = message

 exit lock

 enter lock

 verify not cancelled

 m_message = message

 exit lock

 RecalcWorkerAsync continues:

 pendingAction.Cancel()

The cancellation of the previous call to RecalcAsync happens too late. The previous

recalculation raced against the current recalculation, and the current one happened to finish

first, causing the previous one to overwrite the result.

If the Widget is single-threaded, then we can get rid of the locks, and that also removes

some of the subtle race conditions.

4/5

winrt::IAsyncAction Widget::RecalcWorkerAsync()

{

 auto lifetime = get_strong();

 auto cancellation = co_await winrt::get_cancellation_token();

 auto messageId = m_messageId;

 auto lang = m_lang;

 auto resolved = co_await ResolveLanguageAsync(lang);

 auto library = co_await GetResourceLibraryAsync(resolved);

 auto message = library.LookupResourceAsync(messageId);

 // std::lock_guard guard{ m_mutex };

 if (!cancellation()) {

 m_message = message;

 }

}

winrt::IAsyncAction Widget::RecalcAsync()

{

 auto lifetime = get_strong();

 auto currentAction = RecalcWorkerAsync();

 auto previousAction = std::exchange(m_pendingAction, currentAction);

 if (previousAction) previousAction.Cancel();

 try {

 co_await currentAction;

 } catch (winrt::hresult_canceled const&) {

 // ignore cancellation

 }

}

The race condition doesn’t exist because there is no opportunity for the previous action to do

any work between the time we start the new task and cancel the old one. The only race is

between the final co_await and the cancellation, and one final check takes care of that.

One thing you might notice about this pattern is that m_pendingAction is never nulled out.

It always holds the last successful action, even after it has completed. This means that the

coroutine remains allocated, even though has ended its useful life, consuming memory

(probably not too much) and keeping its inbound parameters alive (fortunately, we have

none). If the coroutine frame is large, or if there are inbound parameters which you need to

run down promptly,¹ you can clean it up once you’ve finished waiting for it.

5/5

winrt::IAsyncAction Widget::RecalcAsync()

{

 auto lifetime = get_strong();

 auto currentAction = RecalcWorkerAsync();

 auto previousAction = std::exchange(m_pendingAction, currentAction);

 if (previousAction) previousAction.Cancel();

 try {

 co_await currentAction;

 } catch (winrt::hresult_canceled const&) {

 // ignore cancellation

 }

 if (m_pendingAction == currentAction) {

 m_pendingAction = nullptr;

 }

}

¹ One example of needing to run down inbound parameters is the case where they belong to

another component. You don’t want to extend the lifetime of foreign objects beyond the end

of the useful life of the coroutine. Not only could that create problems with that other

component (say, because the other component is single-threaded and the thread that hosts it

wants to exit), it could also introduce circular references between that other component and

your component.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

