Ordering asynchronous updates with coroutines, part 4:
Bowing out, explicit version

B® devblogs.microsoft.com/oldnewthing/20210909-00

September 9, 2021

Raymond Chen

Last time, we looked at the “Everybody tries, but only one wins” pattern, in which everyone
calculates a result, but only the last one gets to save it. While this does work, we noted that
there’s an inefficiency: Every calculation runs to completion, even if it has been superseded.

We can address that problem by re-checking after every coroutine resumption whether we
have already lost. If so, we just give up.

1/3


https://devblogs.microsoft.com/oldnewthing/20210909-00/?p=105666

bool widget::KeepGoingAfterAwait(uint32_t counter)

{

}

std::lock_guard guard{ m_mutex };
return counter = m_counter;

winrt::IAsyncAction Widget: :RecalcAsync()

{

After every co_await , we check whether our counter is still current. If not, then it means
that while we were co_await ing, somebody else started a RefreshAsync which caused
our refresh to become obsolete. Instead of proceeding with the work, only to reject it at the

auto lifetime = get_strong();

uint32_t counter;
winrt::hstring messageld;
winrt::hstring lang;

{
std::lock_guard guard{ m_mutex };
counter = ++m_counter;
messageId = m_messageld;
lang = m_lang;
}

auto resolved = co_await ResolvelLanguageAsync(lang);

if (!'KeepGoingAfterAwait(counter)) co_return;

auto library = co_await GetResourcelLibraryAsync(resolved);
if (!KeepGoingAfterAwait(counter)) co_return;

auto message = library.LookupResourceAsync(messageId);

if (!'KeepGoingAfterAwait(counter)) co_return;

std::lock_guard guard{ m_mutex };
if (m_counter == counter) {
m_message = message;

end, we just stop immediately.

The last KeepGoingAfterAwait() check is redundant because we're going to check one last

time inside the lock, but I wrote it out anyway.

As we observed earlier, we can get rid of the locks if all accesses to the members are on a

single thread.

2/3



bool widget::KeepGoingAfterAwait(uint32_t counter)
{

return counter = m_counter;

winrt::IAsyncAction Widget: :RecalcAsync()
{

auto lifetime = get_strong();

uint32_t counter;
winrt::hstring messageld;
winrt::hstring lang;
{
std::lock_guard guard{ m_mutex };
counter = ++m_counter;
messageId = m_messageld;
lang = m_lang;

auto resolved = co_await ResolvelanguageAsync(lang);

if (!KeepGoingAfterAwait(counter)) co_return;

auto library = co_await GetResourcelLibraryAsync(resolved);
if ('KeepGoingAfterAwait(counter)) co_return;

auto message = library.LookupResourceAsync(messageld);

if (!KeepGoingAfterAwait(counter)) co_return;

m_message = message,
I removed the final check of the m_counter , since it is redundant with the KeepGoing-
AfterAwait() thatimmediately precedes it.
Next time, we’ll see how this pattern is already covered by existing functionality.

Raymond Chen

Follow

3/3


https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

