
1/5

September 7, 2021

Ordering asynchronous updates with coroutines, part 2:
Restart with hand-off

devblogs.microsoft.com/oldnewthing/20210907-00

Raymond Chen

Another serialization pattern for coroutines is where calling some method initiates some

asynchronous activity, and if the method gets called again while the activity is still

incomplete, you want to let the previous activity run to completion, and then run it again.

For example, maybe you have a method called SetColor that changes the color in private

state and asynchronously propagates that color into another component. If the previous

color-setting operation is still in progress when a second SetColor occurs, you want to let

the propagation of the old color finish, and once that’s done, start pushing out the new color.

(Intermediate colors are not important; only the last color counts.)

https://devblogs.microsoft.com/oldnewthing/20210907-00/?p=105659

2/5

std::mutex m_mutex;

bool m_busy = false;

winrt::fire_and_forget Widget::SetColor(Color newColor)

{

 auto lock = std::unique_lock(m_mutex);

 m_color = newColor;

 if (std::exchange(m_busy, true)) {

 co_return;

 }

 auto lifetime = get_strong();

 Color latestColor;

 do {

 latestColor = m_color;

 lock.unlock();

 try {

 co_await UpdateColorOfExternalPartner(latestColor);

 } catch (...) {

 // nowhere to report the error

 // you can choose to log it or to fail fast

 }

 lock.lock();

 } while (m_color != latestColor);

 m_busy = false;

}

The idea here is that after setting the private m_color , we check whether somebody else is

already busy updating the color of the external partner. If so, then we just return

immediately, knowing that the existing worker will pick up the new color eventually.

If nobody is doing the work (the previous value of m_busy was false), then we assume

responsibility for the work: We capture the most recently set color, and then drop the lock

while we update the external partner. Once that’s done, we reacquire the lock and see if the

color changed again in the meantime. If so, we go back and push the new latest color,

repeating until we make it through an entire update cycle with the updated color equal to the

current color.

Now, this pattern assumes that we can detect that new work is needed by inspecting the

m_color . But that may not always be the case, in which case we need a separate flag to say

“New work was requested.”

3/5

std::mutex m_mutex;

bool m_busy = false;

bool m_refreshNeeded = false;

winrt::fire_and_forget Widget::Refresh()

{

 auto lock = std::unique_lock(m_mutex);

 m_refreshNeeded = true;

 if (std::exchange(m_busy, true)) {

 co_return;

 }

 auto lifetime = get_strong();

 while (std::exchange(m_refreshNeeded, false)) {

 lock.unlock();

 try {

 co_await RefreshExternalPartner();

 } catch (...) {

 // nowhere to report the error

 // you can choose to log it or to fail fast

 }

 lock.lock();

 }

}

Since we don’t have a m_color to tell us that we need to do more work, we create an explicit

m_refreshNeeded flag, and we use a while loop to keep refreshing the external partner

until we manage to make it all the way to the end without another refresh request coming in.

In the case where the object has thread affinity (common for UI objects), you may already

have the requirement that SetColor or Refresh be called from the UI thread. More

generally, if you can arrange that all accesses to m_color , m_busy , and

m_refreshNeeded are on the same thread, then you don’t need the mutex at all, and all the

uses of the lock object can be removed.¹

In these examples, I made the coroutines fire_and_forget , so they return to their

callers quickly. If we changed them to return IAsyncAction , then the caller could

co_await the call to wait for the update to complete. However, the way we structured the

work, it means that if the object is constantly being updated, the first call to SetColor or

Refresh ends up doing all of the work, and the IAsyncAction doesn’t complete until the

final refresh, which is unfair to the first caller:

Caller 1

co_await Refresh();

 m_busy = true;

 co_await RefreshExternalPartner();

4/5

 Caller 2

co_await Refresh();

 m_needRefresh = true;

 co_return;

 m_needRefresh = false;

 co_await RefreshExternalPartner();

 Caller 3

co_await Refresh();

 m_needRefresh = true;

 co_return;

 m_needRefresh = false;

 co_await RefreshExternalPartner();

 m_busy = false;

 co_return;

We’ll come back to this issue after we look at some other patterns for serializing

asynchronous operations.

Exercise: In the asynchronous refresh pattern, why use a while loop? Why couldn’t we

have used the previous pattern of using a do...while loop, like this?

std::mutex m_mutex;

bool m_busy = false;

bool m_refreshNeeded = false;

winrt::fire_and_forget Widget::Refresh()

{

 auto lock = std::unique_lock(m_mutex);

 if (std::exchange(m_busy, true)) {

 m_refreshNeeded = true;

 co_return;

 }

 auto cleanup = wil::scope_exit([&] { m_busy = false; });

 auto lifetime = get_strong();

 do {

 lock.unlock();

 co_await RefreshExternalPartner();

 lock.lock();

 } while (std::exchange(m_refreshNeeded, false));

}

Bonus chatter: You can be extra-clever and combine m_busy and m_refreshNeeded

into a single atomic variable.

5/5

// 0 = not busy

// 1 = busy

// 2 = refresh needed

std::atomic<int> m_busy;

winrt::fire_and_forget Widget::Refresh()

{

 if (m_busy.exchange(2, std::memory_order_release)) {

 co_return;

 }

 while (m_busy.fetch_sub(1, std::memory_order_acquire) == 2) {

 ... do work ...

 }

}

The initial exchange publishes the request to refresh the external partner, so it uses release

semantics. If the previous value is nonzero, then it means that somebody else is already

working, so we can return immediately and let the existing worker pick up the refresh

request.

If nobody is doing work, then we have to do it. We decrement the busy count and see if there

is work to do. If so, the busy count is decremented to 1, meaning “We are doing work, and no

additional work has been requested.” After doing the work, we loop back and decrement

again. If work has been requested in the meantime, the value will have been bumped up to 2,

so our decrement drops it back to 1, and the loop continues. Eventually, we make it all the

way through without anybody requesting more work, which we detect when the busy count

decrements all the way to zero.

¹ Note that we are assuming that UpdateColorOfExternalPartner and Refresh‐

ExternalPartner return IAsyncAction or otherwise ensure that the co_await resumes

in the same COM context in which it suspended.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

