
1/2

September 1, 2021

Looking at world through __stdcall-colored glasses
devblogs.microsoft.com/oldnewthing/20210901-00

Raymond Chen

Windows core components are compiled with the /Gz flag, which sets __stdcall as the

default calling convention. On x86-32, the __stdcall calling convention is slightly more

efficient than __cdecl because the stack cleanup is done at function return, rather than at

the call site.¹

This configuration for Windows core components does mean that component authors wear

__stdcall -colored glasses when they write their header files.

void DoSomething(int a, int b, int c);

This declares the function DoSomething with no explicit calling convention, which means

that the compiler will use whatever calling convention was set as the default. For Windows

core component authors, this is __stdcall , but for everybody else, the default is

__cdecl .

And since the function is implemented in a Windows core component, the actual calling

convention in the implementation is __stdcall .

The consequence of this situation is that the header file works great for the team that wrote

the code, and their unit tests work great, and their test apps work great, everything works

great. But anybody outside Windows who tries to call the function will probably be calling it

with __cdecl , and then exciting things will happen.

“Works on my machine!”

To be fair, this is something that is easily overlooked, and the whole concept of calling

conventions may not be something many developers are familiar with in the first place. It’s

not like there’s a computer science course on ABIs and calling conventions.²

What this means for you is that if you see a Windows header file that declares a function or

function pointer without an explicit calling convention, you first guess should be that the

calling convention is __stdcall .

https://devblogs.microsoft.com/oldnewthing/20210901-00/?p=105632

2/2

// bad header file

typedef void (*WIDGETFILTERPROC)(int a, int b);

void FilterWidgets(int c, WIDGETFILTERPROC filter);

Your first guess should be that the header file was intended to be written like this:

typedef void (CALLBACK *WIDGETFILTERPROC)(int a, int b);

void WINAPI FilterWidgets(int c, WIDGETFILTERPROC filter);

Next time, we’ll look into the wages of this sin.

¹ On other architectures, __stdcall is identical to __cdecl .

² Even if such a course existed, it probably was just a semester, and quickly forgotten. For

example, I often see multithreading errors in code from younger developers: They probably

did study multithreading at some point in their degree program, but it was likely just one

week out of twelve-week course, and it wasn’t reinforced by subsequent work, so it ended up

forgotten.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

