
1/2

August 16, 2021

What are these dire multithreading consequences that
the GetFullPathName documentation is trying to warn me
about?

devblogs.microsoft.com/oldnewthing/20210816-00

Raymond Chen

The documentation for the GetFullPathName function contains this dire warning:

Multithreaded applications and shared library code should not use the GetFullPathName
function and should avoid using relative path names. The current directory state written by the
SetCurrentDirectory function is stored as a global variable in each process, therefore
multithreaded applications cannot reliably use this value without possible data corruption from
other threads that may also be reading or setting this value. This limitation also applies to the
SetCurrentDirectory and GetCurrentDirectory functions. The exception being when the
application is guaranteed to be running in a single thread, for example parsing file names from
the command line argument string in the main thread prior to creating any additional threads.
Using relative path names in multithreaded applications or shared library code can yield
unpredictable results and is not supported.

What is this warning trying to say? It seems to suggest that the current directory global

variable is not thread-safe. Does this mean that all calls to SetCurrentDirectory and

GetCurrentDirectory need to be serialized by the application?

No, that’s not what it’s saying.

What it’s trying to say is that the meaning of a relative path depends on the current value of

the current directory. The value of the current directory can be changed by any thread at any

time, so make sure that you understand that the result of the GetFullPathName function is

a “moment in time” calculation. Resolving the same relative path in consecutive calls to the

GetFullPathName function could result in different results if the current directory changed

in between.

If you find yourself with a relative path, you have a few choices.

https://devblogs.microsoft.com/oldnewthing/20210816-00/?p=105562

2/2

One option is to pass it as a relative path to a function like CreateFile , but only once, and

as soon as possible. Don’t assume that a second CreateFile will open the same file. You

want to use it as soon as possible because the user entered the relative path based on some

underlying assumptions about the current directory, and the longer you wait, the more likely

those assumptions are going to be wrong.

Another option is to convert it to an absolute path as soon as possible, and use the absolute

path (at your leisure) from then on. Again, you want to convert it as soon as possible to

reduce the likelihood of changes to the conditions under which the user entered the relative

path.

If the relative path didn’t come from the user but rather from, say, a configuration file or

another process, then things are kind of sketchy. The relative path in the configuration file is

probably intended to be interpreted relative to some anchor point (such as the configuration

file itself), not relative to something as fickle as the process’s current directory. And a relative

path received from another process is even more sketchy, because that other process has no

idea what your current directory is.

The concept of the current directory was inherited from MS-DOS, which in turn got it from

the concept of the current drive in CP/M (and probably influenced by a similar concept in

Unix). CP/M was a single-threaded operating system, so there were no race conditions

related to the current directory. And at the time, Unix supported only one thread per process,

so the issue never arose there either.

The idea of a current directory in today’s multithreaded world is a bit of an anachronism, as if

there’s only one “place” a process can be at a time. Standard handles were also designed in a

single-threaded world. I think the convention for the current directory should be that only

the main thread of the main process can change the current directory: Background threads

and helper libraries should keep their hands off.

Bonus chatter: Don’t forget to pass the OFN_NOCHANGEDIR flag when you use the common

file dialogs, to tell them not to change the current directory.

Bonus reading: The curse of the current directory.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20141008-00/?p=43893
https://devblogs.microsoft.com/oldnewthing/20101112-00/?p=12293
https://devblogs.microsoft.com/oldnewthing/20101109-00/?p=12323
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

