
1/4

August 13, 2021

Resolving the ambiguity when your C++ class inherits
from multiple base classes that have the same method

devblogs.microsoft.com/oldnewthing/20210813-05

Raymond Chen

Suppose you have a class which derives from two base classes, both of which have the same

method.

struct Base1

{

 void Something();

 bool IsReady();

};

struct Base2

{

 void Something();

 bool IsReady();

};

struct Derived : Base1, Base2

{

};

void oops()

{

 Derived d;

 d.Something(); // ambiguous call to Something()

}

What happens next depends on what you want.

If you want the derived class to call both base class methods, then you get to write that out,

specifying the order in which you want the calls to occur and how you want the results to be

combined:

struct Derived : Base1, Base2

{

 void Something() { Base1::Something(); Base2::Something(); }

 bool IsReady() { return Base1::IsReady() && Base2::IsReady(); }

};

https://devblogs.microsoft.com/oldnewthing/20210813-05/?p=105554

2/4

On the other hand, maybe you want everything to go to Base1 :

struct Derived : Base1, Base2

{

 void Something() { Base1::Something(); }

 bool IsReady() { return Base1::IsReady(); }

};

Writing out this forwarder can get cumbersome if you have lots of methods, or if the methods

have parameters that you need to perfect-forward:

struct Derived : Base1, Base2

{

 template<typename... Args>

 void Something(Args&&... args)

 { Base1::Something(std::forward<Args>(args)...); }

 template<typename... Args>

 bool IsReady(Args&&... args)

 { return Base1::IsReady(std::forward<Args>(args)...); }

};

Fortunately, there’s a trick: You can steer the compiler toward the implementation in one of

the base classes by using a using declaration.

struct Derived : Base1, Base2

{

 using Base1::Something;

 using Base1::IsReady;

};

One use of the using declaration is to import a method from a base class so you can add

overloads to it. (If you don’t import the methods from the base class, then your overloads

shadow the base class methods.) Here, we are importing a method from a base class and not

adding any overloads. We just want the method to be treated as if it were directly in our class

all along.

This trick comes in handy in C++/WinRT stateful factories: The standard mechanism for

implementing a stateful factory is to override the stateless factory methods provided by the

WidgetT template with your own stateful ones.

namespace winrt::factory_implementation::Widget

{

 struct Widget : WidgetT<Widget, implementation::Widget, static_lifetime>

 {

 void Method(); // stateful static

 };

}

https://devblogs.microsoft.com/oldnewthing/20210524-00/?p=105240

3/4

Windows Runtime static methods can be an aggregation of multiple independent providers

that march together under one flag. Factoring out the functionality into separate classes is

helpful if the class has a large number of static methods which fall naturally into categories of

related methods. For example, there might be some static Widget members that use Plug and

Play (a static WidgetsChanged event and a static FindAllWidgets method), and another

group of static Widget methods that deal with system configuration

(SetMaximumActiveTime , AllowDownloadedContent).

The naïve version doesn’t work:

namespace winrt::factory_implementation::Widget

{

 struct WidgetPlugAndPlay

 {

 event_token WidgetsChanged(TypedEventHandler<IInspectable, IInspectable>
handler);

 void WidgetsChanged(event_token token);

 IVectorView<Widget> FindAllWidgets();

 };

 struct WidgetConfiguration

 {

 void SetMaximumActiveTime(TimeSpan limit);

 bool AllowDownloadedContent();

 void AllowDownloadedContent(bool value);

 };

 struct Widget : WidgetT<Widget, implementation::Widget, static_lifetime>,

 WidgetPlugAndPlay, WidgetConfiguration

 {

 };

}

It doesn’t work because the static methods are multiply-inherited: Once from the WidgetT

template (which forwards to static methods on the implementation class) and once from the

WidgetPlugAndPlay and WidgetConfiguration base classes. To resolve the ambiguity,

you can steer the methods with a using declaration.

namespace winrt::factory_implementation::Widget

{

 struct Widget : WidgetT<Widget, implementation::Widget, static_lifetime>,

 WidgetPlugAndPlay, WidgetConfiguration

 {

 using WidgetPlugAndPlay::WidgetsChanged;

 using WidgetPlugAndPlay::FindAllWidgets;

 using WidgetConfiguration::SetMaximumActiveTime;

 using WidgetConfiguration::AllowDownloadedContent;

 };

}

4/4

Related: How can I write a C++ class that iterates over its base classes?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20210114-00/?p=104714
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

