
1/2

July 16, 2021

What’s the difference between throwing a
winrt::hresult_error and using winrt::throw_hresult?

devblogs.microsoft.com/oldnewthing/20210716-00

Raymond Chen

There are two ways to throw an exception in C++/WinRT. You can throw the exception

object directly:

throw winrt::hresult_invalid_argument();

throw winrt::hresult_error(D3DERR_DEVICELOST);

Or you can use the throw_hresult function.

winrt::throw_hresult(E_INVALIDARG);

winrt::throw_hresult(D3DERR_DEVICELOST);

What’s the difference?

If you look at the code for the throw_hresult function, you’ll see that it eventually throws

the underlying exception object, but it constructs the exception object with the take_

ownership_from_abi parameter. So the real question is “What does the take_

ownership_from_abi parameter do?”

The take_ownership_from_abi parameter means that this exception is taking over the

error context from the existing ABI error context. The error context is what is used by error

reporting tools and debuggers to show the root cause of the error.

So it boils down to this:

If this error was detected by your code, then you want the debugger and other error

reporting tools to point to your code as the source of the error, and you should use

throw winrt::hresult_error or a specific derived exception type if applicable,

such as hresult_invalid_argument .

If you are propagating an error received by another component, then you want the

debugger and other error reporting tools to direct the developer to the component from

which you received the error. In that case, you should use winrt::throw_hresult .

https://devblogs.microsoft.com/oldnewthing/20210716-00/?p=105448

2/2

Note that in the second case (propagation), the component you received the error from could

itself be propagating an error from yet another component. As long as everybody propagates

the error context along with the error, the debugging tools will point at the code that

originated the error.¹

¹ The intermediate components are also reported, so you can also follow how the error

traveled from the originator to the final destination, but the origination usually gives you the

best information about what went wrong.²

² Propagating and transforming error context brings us full circle to the very early days of

COM when HRESULT was a handle to an error object. The old new thing has become the

new old thing.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/windows/win32/api/restrictederrorinfo/
https://devblogs.microsoft.com/oldnewthing/20180117-00/?p=97815
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

