
1/3

July 8, 2021

On the perils of holding a lock across a coroutine
suspension point, part 2: Nonrecursive mutexes

devblogs.microsoft.com/oldnewthing/20210708-00

Raymond Chen

Last time, we looked at what can go wrong if you hold a recursive mutex across a coroutine

suspension point. Do things get any better if you switch to a nonrecursive mutex?

Recall that we are looking at this function:

IAsyncAction MyObject::RunOneAsync()

{

 std::lock_guard guard(m_mutex);

 if (!m_list.empty()) {

 auto& item = m_list.front();

 co_await item.RunAsync();

 item.Cleanup();

 m_list.pop_front();

 }

}

Let’s walk through what happens if the mutex is nonrecursive and a call to RunOneAsync is

made from the same thread that mad a previous not-yet-complete call to RunOneAsync .

RunOneAsync #1

 construct lock_guard m_mutex.lock()

 auto& item = m_list.front();

 co_await item.RunAsync(); → Suspended

RunOneAsync #1 returns IAsyncAction

↓

Thread available to do other work

↓

https://devblogs.microsoft.com/oldnewthing/20210708-00/?p=105420
https://devblogs.microsoft.com/oldnewthing/20210707-00/?p=105417

2/3

RunOneAsync #2

 construct lock_guard m_mutex.lock() — blocks

During the period of suspension, anybody who wants to acquire the lock will block, since

that’s how nonrecursive mutexes work.

Formally speaking, attempting to acquire a nonrecursive mutex recursively triggers

undefined behavior, so from a compiler-theoretic point of view, the game is over and

anything can happen, including time travel. In practice, what happens is that the attempted

recursive acquisition blocks.

And that’s a real hard block, not a coroutine suspend. The thread that tries to acquire the lock

cannot do anything while waiting for the lock to become available. In particular, it cannot

run coroutine continuations.

Now, we don’t know much about RunAsync . Maybe it needs access to the originating thread

in order to complete its work. Or maybe it uses another coroutine, and that other coroutine

needs access to the originating thread. If that’s the case, then the RunAsync will never

complete, because the originating thread is hung.

Maybe you’re lucky, and RunAsync can do all of its work without needing to access the

originating thread. You’re still in trouble, because the RunOneAsync might need access to

the originating thread. For example, C++/WinRT has a policy that co_await of an

IAsyncAction always resumes in the same apartment context. If the original apartment is

a single-threaded apartment (standard for UI threads), then it’s going to need to get back to

that originating thread, but it can’t because the originating thread is hung waiting for the

mutex.

Now, suppose you’re super-lucky, and the co_await of RunAsync doesn’t need to resume

on the originating thread. Maybe you started in the multi-threaded apartment, so it can

resume on any other thread in that apartment. Great, your code is running again, just on a

different thread.

Some other thread

↓

RunOneAsync #1 resumes ← RunAsync #1 completes

 item.Cleanup();

 m_list.pop_front();

https://devblogs.microsoft.com/oldnewthing/20140627-00/?p=633

3/3

 destruct lock_guard m_mutex.unlock() — from the wrong thread

We are unlocking a mutex from a thread that didn’t lock it. This is not a legal operation and

the behavior is undefined.

So yeah, double undefined behavior.

In practice, what usually happens is that your main thread hangs unrecoverably. You dump

all the stacks to try to find the owner, and you don’t see any stacks that are in code that’s

holding the lock. That’s because the code that’s responsible for the lock isn’t active on any

thread, so you won’t see it in any stack. The code is waiting to resume execution when its

associated coroutine is resumed, and that coroutine is somewhere on the heap.

Basically, any co_await is a point of potential re-entrancy.

Next time, we’ll look at ways of addressing the problem.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

