
1/3

June 28, 2021

The initializing constructor looks like an assignment, but
it isn’t

devblogs.microsoft.com/oldnewthing/20210628-00

Raymond Chen

Some time ago, I warned about the perils of the accidental C++ conversion constructor: A

single-parameter constructor is considered by default to be a conversion constructor; you can

opt out of this by marking the constructor explicit .

I gave as an example this class:

class Buffer

{

public:

 Buffer(size_t capacity);

 Buffer(std::initializer_list<int> values);

};

The size_t constructor is not marked as explicit , so it is a conversion constructor. And

that permits weird things like this:

Buffer b = 1; // um...

What exactly is happening here?

A common misconception is that what’s happening is that a temporary Buffer is created

(with the capacity 1), and then that temporary buffer is assigned to the destination buffer b .

That’s not what’s happening. You can prove this by deleting the assignment operators.

class Buffer

{

public:

 Buffer(size_t capacity);

 Buffer(std::initializer_list<int> values);

 Buffer& operator=(Buffer const&) = delete;

 Buffer& operator=(Buffer&&) = delete;

};

Buffer b = 1; // still compiles

https://devblogs.microsoft.com/oldnewthing/20210628-00/?p=105374
https://devblogs.microsoft.com/oldnewthing/20210115-00/?p=104719

2/3

(Deleting the move assignment operator is redundant because declaring the copy assignment

operator automatically suppresses the implicit move assignment operator. But I deleted it

explicitly for emphasis.)

Even though there is an equal-sign in the statement, there is no actual assignment.

There can’t be an assignment, if you think about it, because the assignment operator assumes

that this refers to an already-constructed object. But we don’t have a constructed object

yet.

According to the language rules,

Buffer b = 1;

is a copy-initialization, and the copy initialization is performed by taking the thing on the

right-hand side and, if the types don’t match,¹ it looks for a conversion constructor.

The equals sign doesn’t mean assignment here. It’s just a quirk of the syntax.

¹ If the types do match, then “the initializer expression is used to initialize the destination

object.” At this point copy elision kicks in:

extern Buffer get_buffer();

Buffer b = get_buffer();

The Buffer returned by get_buffer() is placed directly into the memory occupied by

b .

Copy elision also means that

Buffer b = Buffer(1);

does not create a temporary Buffer of capacity 1, and then construct b from that

temporary buffer. Instead, the Buffer of capacity 1 is constructed directly into b . The

result is the same as Buffer b(1); .

Since the copy elision rule can be repeated,

Buffer b = Buffer(Buffer(Buffer(1)));

is also the same as Buffer b(1); , because each repetition of the rule strips away one of the

calls to Buffer(...) .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

