
1/4

June 24, 2021

The ARM processor (Thumb-2), part 19: Common
patterns

devblogs.microsoft.com/oldnewthing/20210624-46

Raymond Chen

We saw some time ago how to recognize dense switch statements that use the TBB and

TBH instructions. Here are some other common sequences in compiler-generated code.

Note that instructions are likely to be reordered by the compiler to avoid stalls.

A call to an imported function is an indirect function call through a global function pointer:

 movs r0, #0 ; first parameter

 movs r1, #42 ; second parameter

 ldr r3, =|__imp__Function| ; address of global function pointer

 ldr r3, [r3] ; load function pointer

 blx r3 ; call the function

A call to a virtual function is an indirect function call through a function pointer stored in the

object’s vtable.

 mov r0, r4 ; r0 = this

 mov r1, #42 ; r1 = first parameter

 mov r3, [r0] ; r3 -> vtable

 ldr r3, [r3, #4] ; r3 = pointer to function from vtable

 blx r3 ; call the function

Windows components are compiled with control flow guard (CFG), which validates indirect

jump targets, making it harder for malware to redirect indirect calls to malicious payload.

Calls to virtual functions go through CFG to make it harder for an attacker to manufacture a

fake vtable and trick code into calling through it. A virtual function call with CFG enabled

looks like this:

https://devblogs.microsoft.com/oldnewthing/20210624-46/?p=105355
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

2/4

 mov r5, [r4] ; r5 -> vtable

 mov r5, [r5] ; r5 = pointer to function from vtable

 ldr r3, =|__guard_check_call_fptr| ; address of pointer to CFG check function

 ldr r3, [r3] ; r3 = pointer to CFG check function

 mov r0, r5 ; r0 = pointer to function from vtable

 blx r3 ; check the pointer in r0

 mov r0, r4 ; r0 = this

 mov r1, #42 ; r1 = first parameter

 mov r3, [r0] ; r3 -> vtable

 blx r5 ; call the pointer we validated

An important detail here is that we call indirectly through the same pointer we validated,

rather than loading it from memory again. This avoids a TOCTTOU race condition, where the

attacker swaps in a malicious function pointer after the old value is validated.

Another common sequence is the dense switch statement, which uses the TBB and TBH

instructions.

 cmp r0, #8 ; beyond end of table?

 bhi default_case ; Y: go to the default case

 tbb [pc, r0] ; B: use jump table

 dcb 4, 53, 4, 53, 93, 53, 143, 172, 205

case_0:

case_2:

 ...

It is common to put the jump table immediately after the table branch instruction, and

address it with pc, which has conveniently been moved forward four bytes, so it points at

what would be the next instruction. In our example, the jump table is eight bytes long, so an

entry of 4 means that we jump ahead 4 × 2 bytes, which takes us just past the jump table.

The barrel shifter also comes in handy when performing multiword bit shifting, since you can

use the barrel shifter to isolate the bits that need to move between words.

 ; logical right shift doubleword in (r1,r0) by N

 lsrs r0, r0, #N ; logical shift right lower half

 orr r0, r0, r1 lsl #(32-N) ; copy low N bits 0 of r1 to high bits of r0
 lsrs r1, r1, #N ; logical shift right upper half

In pictures, we are doing this:

 r1 r0

 Initial conditions

 ⬊

3/4

 0 After lsrs r0, r0, #N

 ⬊ logical or

 0

 ⇊

 After orr r0, r0, r1 lsl #(32-N)

0 After lsrs r1, r1, #N

We shift the lower half right by N positions, which zeroes out the top N bits of the lower half.

Then we use the barrel shifter to take the upper half and shift it left by 32 − N positions: This

takes the lower N bits and move them to the top of the 32-bit value, clearing all the other bits.

The result is then orr ‘d into the shifted lower half, so the net effect is that the low N bits of

the upper half are copied to the upper N bits of the lower half. Finally, we shift the upper half

right by N positions.

For an arithmetic doubleword right shift, you can replace the final instruction with asrs .

And an analogous three-instruction sequence works for multibit left shifts.

Shifting by more than 32 bits is just a matter of shifting the surviving half by N − 32 and

either zeroing-out (for logical shifts) or sign-extending (for arithmetic right shift) the

remaining bits.

This pattern extends naturally to sizes beyond two words, though you won’t see that in

compiler-generated code seeing as there are no arithmetic integer types bigger than 64 bits in

32-bit Windows.

We’ll wrap up the series, as is traditional, with an annotated code walkthrough of a simple

function.

Bonus chatter: For the special case of shifting by one position, you can take shortcuts: Start

at the opposite end and rotate the carry into the other half.

 ; single bit right shift doubleword in (r1, r0)

 lsrs r1, r1, #1 ; logical shift right upper half

 rrx r0, r0 ; rotate shifted-out bit into high bit of lower half

Here it is in pictures:

 r1 C r0

4/4

 ? Initial conditions

 ⬊ ⬊

0 After lsrs r1, r1, #1

 ⬊ ⬊

0 After rrx r0, r0

The trick here is that if only one bit is being shifted out, we can hold it in the carry, and then

use rrx to shift it into the high bit of the lower half. The bottom bit of the lower half ends

up in the carry, ready to be rotated into the next word (if you need to shift a large array right

by one bit).

The same trick works for shifting left, using the fact that adcs can be used to perform a left

rotate through carry.

 ; single bit left shift doubleword in (r1,r0)

 adds r0, r0, r0 ; shift left and propagate bit 31 to carry

 adcs r1, r1, r1 ; shift left and fill bottom bit with carry

These special-case sequences for 1-bit shifts do introduce instruction dependencies, which is

bad for out-of-order execution, so compilers may avoid them for performance reasons. The

results I see are inconsistent:

Compiler

Uses short version for 1-bit shift

Right Left

MSVC No No

clang Yes No

gcc No Yes

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

