
1/4

June 14, 2021

The ARM processor (Thumb-2), part 11: Atomic access
and barriers

devblogs.microsoft.com/oldnewthing/20210614-00

Raymond Chen

On the ARM processor, atomic operations are implemented in terms of a load-locked/store-

conditional pair of instructions.

 LDREX Rd, [Rn, #imm8] ; load word from [Rn, #imm8] and acquire exclusively

 STREX Rd, Rm, [Rn, #imm8] ; store Rm to [Rn, #imm8] if exclusively held

 ; Rd = 0 on success or 1 on failure

 ; also LDREXB, LDREXH, LDREXD

 ; STREXB, STREXH, STREXD

 CLREX ; release exclusive lock

The LDREX instruction loads a word from the specified address and takes an exclusive lock

on the memory. This exclusive lock is broken if any other processor writes to the same

address, or if the lock is explicitly cleared. The granularity of the lock is permitted to be as

coarse as 2KB.

The STREX instruction writes the value Rm to Rn provided the exclusive lock has not been

lost. The Rd register is set to 0 if the write succeeded, or 1 if the write failed. The Rd register

may not be the same register as Rm.

The STREX is permitted to early-out and return failure due to a lost lock before checking

whether the memory at Rn is writable.

The LDREX and STREX instructions support only offset addressing with an unsigned 8-bit

offset. (An offset of zero is assumed if none is provided.) No pre-indexing or post-indexing

allowed.

There are also byte, word, and doubleword versions of this pair of instructions. For best

results, use the STREX variant that matches the LDREX variant, and with the same address.

https://devblogs.microsoft.com/oldnewthing/20210614-00/?p=105307

2/4

You can explicitly abandon a lock obtained by one of the LDREX instructions by issuing a

CLREX instruction. This is used primarily in kernel mode to ensure that interrupts and

context switches cause the lock to be lost: If the user-mode code is interrupted between the

LDREX and the subsequent STREX , you want to make sure the STREX fails, rather than

accidentally succeeding because it’s writing to an address that coincidentally matches a

previous LDREX from the outgoing thread or interrupt.

The atomic memory access instructions require aligned memory. Relaxing alignment

enforcement doesn’t help here. Not that you expect it to: How can the kernel emulate a

misaligned lock?

The atomic memory operations are frequently coupled with synchronization primitives. The

ARM processor has a rather weak memory model, so memory barriers are essential in proper

multithreaded code.

 DMB ish ; data memory barrier

 DSB ish ; data synchronization barrier

 ISB sy ; instruction synchronization barrier

The data memory barrier ensures that all preceding writes are issued before any subsequent

memory operations (including speculative memory access). In acquire/release terms, it is a

full barrier. The instruction does not stall execution; it just tells the memory controller to

preserve externally-visible ordering. This is probably the only barrier you will ever seen in

user-mode code.

The data synchronization barrier is a data memory barrier, but with the additional behavior

of stalling until all outstanding writes have completed. This is typically used during context

switches.

The instruction synchronization barrier flushes instruction prefetch. This is typically used if

you have generated new code, say by jitting it or paging it in from disk.

All of the barrier instructions take a parameter known as the sychronization domain. In

practice, they will be the values I gave in the examples above.

A typical atomic sequence, complete with memory barriers, looks like this:

https://randomascii.wordpress.com/2020/11/29/arm-and-lock-free-programming/

3/4

 dmb ish ; memory barrier

@@: ldrex r2, [r0] ; load r2 from [r0] and lock

 ; calculate new value - in this example, we increment

 adds r2, r2, #1 ; increment it

 strex r3, r2, [r0] ; store if lock is still held

 cmp r3, #0 ; did it succeed?

 bne @B ; N: try again

 dmb ish ; memory barrier

Finally, we have some instructions that provide hints to the processor about future memory

usage:²

 PLD [Rn, #imm] ; preload data

 PLDW [Rn, #imm] ; preload data with intent to write

 PLI [Rn, #imm] ; preload instructions

Processors are not required to honor these instructions and may treat them as nop. (Pre-

index and post-index are not supported, so you don’t have to worry about accidentally

nop’ing out the write-back.) If the address being prefetched is not valid, the request is

ignored.

Okay, enough about memory. Next time, we’ll look at control transfer instructions.

Bonus chatter: Classic ARM also contains two deprecated pseudo-atomic instructions:

 ; swap

 swp Rt, Rt2, [Rn] ; temp = [Rn]

 ; [Rn] = Rt2

 ; Rt = temp

 ; swap byte

 swpb Rt, Rt2, [Rn] ; temp = byte at [Rn]

 ; byte at [Rn] = Rt2

 ; Rt = temp (zero-extended)

These are pseudo-atomic instructions because the processor promises that it will not split the

load and store, but only if no TLB eviction occurs, and it makes no promises about what other

processors or devices may see.

These instructions are formally deprecated by ARM, and operating systems are permitted to

disable them outright. Windows disables them, which is redundant because the instructions

aren’t available in Thumb-2 mode anyway. I guess Windows wants to make extra sure you

don’t use them.

4/4

¹ Even if alignment enforcement is relaxed, you will still get an alignment exception for

misaligned doubleword access or any instruction that reads or writes multiple registers.

² Internally, these instructions reuse the encodings for loading partial values into pc,

something you would never do in sane code. This is an example of how Thumb-2 disallows

certain operations with pc and reuses the instruction encodings for other purposes.

Instruction Encoded as if

PLD [...] LDRB pc, [...]

PLDW [...] LDRH pc, [...]

PLI [...] LDRSB pc, [...]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

