
1/2

June 8, 2021

The ARM processor (Thumb-2), part 7: Bitwise operations
devblogs.microsoft.com/oldnewthing/20210608-00

Raymond Chen

The ARM processor offers the following bitwise operations:

 ; bitwise and

 and Rd, Rn, op2 ; Rd = Rn & op2

 ; bitwise or

 orr Rd, Rn, op2 ; Rd = Rn | op2

 ; bitwise exclusive or

 eor Rd, Rn, op2 ; Rd = Rn ^ op2

 ; bitwise not

 mvn Rd, op2 ; Rd = ~op2

 ; bitwise and not ("bit clear")

 bic Rd, Rn, op2 ; Rd = Rn & ~op2

 ; bitwise or not

 orn Rd, Rn, op2 ; Rd = Rn | ~op2

 ; all support the S suffix

For bit-testing purposes, there are also discarding versions:

 ; test for equivalence

 teq Rn, op2 ; set flags for Rn ^ op2

 ; test

 tst Rn, op2 ; set flags for Rn & op2

For bitwise operations that set flags, the negative (N) and zero (Z) flags reflect the result, the

carry (C) flag reflects any shifting that occurred during the calculation of op2 (noting that

calculating constants may also involve shifting, as noted earlier when we discussed

constants), and the overflow (V) flag is unchanged.

https://devblogs.microsoft.com/oldnewthing/20210608-00/?p=105290

2/2

I don’t see much value in the TEQ instruction. It sets the Z flag the same way as the the

CMP instruction. I guess you could use it to see if two registers have the same sign bit, since

it sets N based on the exclusive-or of the two inputs. I guess that’s handy when calculating

the sign of emulated multiplication or division, but even in those cases, you aren’t going to

jump based on the sign; you’re going to save the sign of the result for later application, so you

would be better off with the EOR instruction anyway.

Okay, well, you can use the LSL shift on the second register argument in order to compare

the high bit of one register with an arbitrary bit of another.

 teq Rn, Rm LSL #n ; compare Rn bit 31

 ; and Rm bit 31 - n

 bmi same ; branch if different

Still not particularly compelling. Maybe there’s some specialized workflow where this is

useful, like cryptography?

Next time, we’ll look at the bit shifting instructions.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

