
1/5

June 4, 2021

The ARM processor (Thumb-2), part 5: Arithmetic
devblogs.microsoft.com/oldnewthing/20210604-00

Raymond Chen

The general format of three-register instructions in Thumb-2 goes like this:¹

 op Rd, Rn, #imm12 ; Rd = Rn op decode(imm12)

 op Rd, Rn, Rm ; Rd = Rn op Rm

 op Rd, Rn, Rm, shift ; Rd = Rn op (Rm with shift applied)

 ; shift can be LSL, LSR, ASR, ROR

The #imm12 is a constant in a form we discussed last time.

For notational convenience, let’s call this

 op Rd, Rn, op2 ; op2 can be #imm12, Rm, or Rm with a shift

Sometimes you’ll see a two-register version, which is shorthand for (and often a more

compact encoding than) the three-register version:

 op Rd, Rn ; shorthand for op Rd, Rd, Rn

Like the PowerPC, the ARM uses true carry. This means that for subtraction, the carry is

clear when a borrow occurs, and subtract with carry subtracts an additional unit if inbound

carry is clear.

With that said, here are the basic arithmetic operations:

https://devblogs.microsoft.com/oldnewthing/20210604-00/?p=105280
https://devblogs.microsoft.com/oldnewthing/20210603-00/?p=105276
https://devblogs.microsoft.com/oldnewthing/20180808-00/?p=99445

2/5

 ; add

 add Rd, Rn, op2 ; Rd = Rn + op2

 ; add with carry

 adc Rd, Rn, op2 ; Rd = Rn + op2 + carry

 ; subtract

 sub Rd, Rn, op2 ; Rd = Rn - op2

 ; subtract with carry

 sbc Rd, Rn, op2 ; Rd = Rn - op2 - !carry

 ; reverse subtract

 rsb Rd, Rn, op2 ; Rd = op2 - Rn

 ; reverse subtract with carry

 rsc Rd, Rn, op2 ; Rd = op2 - Rn - !carry

 ; copy register from constant, register, or generalized op2

 mov Rd, #imm8 ; Rd = imm8 (0 to 255)

 mov Rd, Rm ; Rd = Rm

 mov Rd, op2 ; Rd = op2

 ; copy register from bitwise NOT of register or generalized op2

 mvn Rd, Rm ; Rd = ~Rm

 mvn Rd, op2 ; rd = ~op2

 ; all support the S suffix

I noted earlier that in traditional RISC, there is no need for an architectural MOV instruction

because you can treat it as a pseudo-instruction formed by adding zero to a register. Thumb-

2 does include it as a special instruction because it has a 16-bit encoding in the case where

you are loading a small positive constant, or if you are copying to a low register (even if the

source register is high). There’s also a more traditional op2 format that takes decoded 12-

bit immediates or shifted registers.

The most valuable part of reverse subtraction is that you can use it to subtract from a

constant. In particular, you can negate a register by subtracting it from zero.

There are also discarding versions of the subtraction instructions, where the sole purpose is

setting flags.

 ; compare (compare Rn with op2)

 cmp Rn, op2 ; Set flags for Rn - op2

 ; compare negative (compare Rn with -op2)

 cmn Rn, op2 ; Set flags for Rn + op2

3/5

The ARM processor designers are pulling a fast one here. In the MVN instruction, the N

stands for not, meaning that it moved the bitwise negation of the op2 . But in CMN , the N

stands for negative, meaning that it compares the arithmetic negative of the op2 .

There’s an even more devious trap hiding in the CMN instruction, which I will discuss next

time.

Multiplication has a few variations. These are the 32 × 32 → 32 multiplies:

 ; multiply

 mul Rd, Rn, Rm ; Rd = Rn * Rm

 muls Rd, Rn, Rm ; Rd = Rn * Rm, set partial flags

 ; multiply accumulate

 mla Rd, Rm, Rs, Rn ; Rd = (Rm * Rs) + Rn

 ; multiply subtract

 mls Rd, Rm, Rs, Rn ; Rd = Rn - (Rm * Rs)

The only multiply or divide instruction that has the option to set flags is MULS . It updates

the negative (N) and zero (Z) flags to match the result, but the carry (C) and overflow (V)

flags are unmodified.

And here are the 32 × 32 → 64 multiplies:

 ; unsigned multiply long

 umull Rdlo, Rdhi, Rm, Rs ; Rdhi:Rdlo = Rm * Rs (unsigned)

 ; signed multiply long

 smull Rdlo, Rdhi, Rm, Rs ; Rdhi:Rdlo = Rm * Rs (signed)

 ; unsigned multiply accumulate long

 umlal Rdlo, Rdhi, Rm, Rs ; Rdhi:Rdlo = Rdhi:Rdlo + Rm * Rs (unsigned)

 ; signed multiply accumulate long

 smlal Rdlo, Rdhi, Rm, Rs ; Rdhi:Rdlo = Rdhi:Rdlo + Rm * Rs (signed)

 ; unsigned multiply accumulate accumulate long

 umaal Rdlo, Rdhi, Rm, Rs ; Rdhi:Rdlo = Rdhi + Rdlo + Rm * Rs (unsigned)

The “unsigned multiply accumulate accumulate long” instruction is a bit of an oddball. Its

funny name reflects the fact that the registers of the output register pair are treated as

separate integer inputs.

Of the multiply instructions, I’ve seen the compiler use MUL , MLA , UMULL and SMULL . I

have yet to see it use UMLAL , SMLAL , or UMAAL .

There are also division instructions, but they are architecturally optional and raise an “invalid

instruction” on processors that don’t support them.

4/5

 ; unsigned divide

 udiv Rd, Rn, Rm ; Rd = Rn / Rm (unsigned)

 ; signed divide

 sdiv Rd, Rn, Rm ; Rd = Rn / Rm (signed)

The division instructions perform integer unsigned or signed division, with the result

rounded toward zero. In the special case of signed division of 0x80000000 ÷ 0xFFFFFFFF ,

the processor produces a result of 0x80000000 without trapping. By default, division by

zero does not trap; it just returns zero. However, some revisions allow the operating system

to enable trapping on division by zero. Windows enables trapping when the processor

supports it.²

If hardware support for division is not present, the instructions trap into the kernel, where

the operation is emulated. Operating system code generally does not assume hardware

division support, and division will call out to a helper function to perform the division.

I’m skipping over the SIMD and multimedia instructions, like saturating arithmetic and

parallel arithmetic. I have yet to see them in compiler-generated code.

Next time, we’ll look at the lie hiding inside the CMN instruction.

Bonus chatter: Commenter Petteri Aimonen points out that even though the division

operation does not produce the remainder, you can recover the remainder with just one

additional instruction, thanks to the “multiply and subtract” instruction:

 sdiv Rq, Rn, Rm ; Rq = Rn / Rm (signed)

 mls Rr, Rq, Rm, Rn ; Rr = Rn - (Rq * Rm) = Rn % Rm

In practice, the MSVC, gcc and clang compilers default to assuming that sdiv is an

emulated instruction and performing the division manually rather than risking a trap. The

emulated version produces the remainder for free as a by-product. If you tell them to assume

armv7ve, then they will enable the native division instruction. The gcc and clang compilers

will use mls to calculate the remainder. MSVC breaks it into separate mul and subs

instructions.

¹ Classic ARM also supports shifting by an amount provided by a fourth register, leading to

instructions like

 ADD Rd, Rn, Rm, LSL Rs ; Rd = Rn + (Rm << Rs)

² There is no dedicated “divide by zero” trap. Instead, if division by zero is attempted, the

processor raises an “invalid instruction” trap. The trap handler is expected to parse the

faulting instruction, identify it as a valid division instruction, and then realize that the divisor

is zero.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

Follow

