
1/6

May 24, 2021

On static methods in the Windows Runtime and
C++/WinRT

devblogs.microsoft.com/oldnewthing/20210524-00

Raymond Chen

The Windows Runtime supports static members, which are members that apply to a class as

a whole, rather than to particular instances of a class. The expectation is that these members

are exposed via the language projection as static members of some language-specific

representation of the class.

Under the covers, though, there are no static members. That’s because static members have

to belong to a class, but the Windows Runtime uses COM as its low-level interface, and all

COM members belong to COM interfaces, and COM interfaces are implemented by objects.

For illustration purposes, say we have this Windows Runtime class:

runtimeclass Widget

{

 Widget(); // default constructor

 Widget(String name); // nondefault constructor

 void InstanceMethod();

 static void StaticMethod();

}

Accessing the InstanceMethod() from a Widget object is easy: The object implements

IWidget , and you call the IWidget::InstanceMethod() method on it.

But it’s less obvious how you get to the constructors and static methods. Because those start

from nothing; there is no object in your hand from which to call the methods.

The solution is to fabricate another object, known as the activation factory. This object

contains all the operations that are not dependent upon an existing instance. You can think

of this object as representing the class itself.

from nothing

https://devblogs.microsoft.com/oldnewthing/20210524-00/?p=105240

2/6

↓RoGetActivationFactory(“Widget”)

Widget factory

IActivationFactory

ActivateInstance()

IWidgetFactory

CreateInstance(name)

IWidgetStatics

StaticMethod()

Every activation factory implements IActivationFactory at a minimum. This interface

provides the default constructor, known as IActivationFactory::ActivateInstance() .

Even if an object doesn’t have a default constructor, the IActivationFactory interface will

still be there; its ActivateInstance method will just return E_NOTIMPL .

If a class has nondefault constructors, they exist on a separate IWidgetFactory method. By

convention, these nondefault constructor methods are named CreateInstance or some

variation thereof.

And if a class has static members, then they exist on an IWidgetStatics method.

For example, under the covers, calling a static method works like this:

IWidgetStatics* statics;

RoGetActivationFactory(L"Widget", IID_PPV_ARGS(&statics));

statics->StaticMethod();

Okay, so how does C++/WinRT represent static members?

At the projection level, they look like static class members.

winrt::Widget::StaticMethod();

C++/WinRT does the under-the-covers thing we described above, though with the bonus

feature of caching the activation factory object for better performance.

At the implementation level, what happens depends on what version of C++/WinRT you’re

using.

In C++/WinRT version 1 (or C++/WinRT without the /optimize option), the

implementation mirrors the under-the-covers behavior:

3/6

namespace winrt::factory_implementation::Widget

{

 struct Widget : WidgetT<Widget>

 {

 // instance method on factory object

 void SomeMethod() { ... }

 }

}

C++/WinRT autogenerates the IActivationFactory and IWidgetFactory by having the

corresponding methods construct an instance via a corresponding public constructor of the

implementation::Widget type. But the static members are up to you to implement, and

they are members of the factory object.

When the Widget object is consumed by the projection, it goes through the factory:

winrt::Widget::StaticMethod

↓RoGetActivationFactory(“Widget”)

Widget factory

IActivationFactory

ActivateInstance()

(autogenerated)

IWidgetFactory

CreateInstance(name)

(autogenerated)

IWidgetStatics

StaticMethod()

(I put the static method call in a dotted box to emphasize that there is no object involved

here. It’s a free function.)

In the case where your static methods are stateless, this creates an inefficiency in the

projection when used from within the same module: They still go through the formality of

obtaining a factory and calling the nominally static method as a member method of the

IWidgetStatics interface. But if the static method is stateless, then it has no use for the

factory object. We went through the effort of locating it, and then making a virtual method

call on it, when we could have just gone straight to the implementation.

4/6

C++/WinRT version 2 with the /optimize option fixes this. Calls to static methods are

forwarded to the corresponding static method on the implementation class, rather than to

the instance method on the factory implementation class.

namespace winrt::implementation::Widget

{

 struct Widget : WidgetT<Widget>

 {

 // static method on instance object

 static void SomeMethod() { ... }

 }

}

Furthermore, the factory implementation also forwards its instance members (corresponding

to Windows Runtime static members) to the static members of the implementation type.

 winrt::Widget::StaticMethod

 ⇘

External
consumer

→ Widget factory Widget instance static
members

 IActivationFactory

 ActivateInstance()

(autogenerated)

 IWidgetFactory

 CreateInstance(name)

(autogenerated)

 IWidgetStatics ⇒

 StaticMethod() StaticMethod()

Sending the projection’s static method straight to the instance static method avoids the

hassle of obtaining the widget factory object, which we never use anyway. It avoids the virtual

call through the factory’s COM interfaces, and thereby opens inlining opportunities for very

simple static methods.

But what if your static methods are stateful? Well, you could just keep that state in global

variables, but that’s a problem if some of the state involves COM objects, because you now

have a COM object in a global variable: The global variable will destruct when the DLL

unloads, which is likely to be after COM has shut down.

5/6

This is where the COM static store comes to the rescue. You can ask C++/WinRT to put the

class factory in the COM static store by adding static_lifetime to the template

parameter list:

namespace winrt::factory_implementation::Widget

{

 struct Widget : WidgetT<Widget, static_lifetime>

 {

 ...

 }

}

Now you can put your state in the factory object, and it will be destructed when COM tears

down.

But how do you access the factory object from the static method in the instance object? You’ll

just have to get it manually.

namespace winrt::implementation::Widget

{

 struct Widget : WidgetT<Widget>

 {

 // static method on instance object

 // forward to factory object

 static void SomeMethod() {

 get_activation_factory<winrt::Widget, IWidgetStatics>()

 ->StaticMethod();

 }

 }

}

At this point, you start to get a little dizzy because there’s this game of “Where’s the static

method?” being played. The instance implementation is forwarding to the factory

implementation, but the factory implementation is forwarding to the instance

implementation:

https://devblogs.microsoft.com/oldnewthing/20210208-00/?p=104812
https://knowyourmeme.com/memes/spider-man-pointing-at-spider-man

6/6

You break the infinite loop by implementing the method in the factory implementation, just

like you did back in C++/WinRT version 1:

namespace winrt::factory_implementation::Widget

{

 struct Widget : WidgetT<Widget>

 {

 // instance method on factory object

 void SomeMethod() { ... }

 }

 // state variables go here

 int32_t m_state;

}

An explicit implementation in the factory implementation object overrides the default

implementation, thereby breaking the cycle.

 winrt::Widget::StaticMethod

 ⇘

External
consumer

→ Widget factory Widget instance static
members

 IActivationFactory

 ActivateInstance()

(autogenerated)

 IWidgetFactory

 CreateInstance(name)

(autogenerated)

 IWidgetStatics ⇐

 StaticMethod() StaticMethod()

Bonus chatter: Even if you never call the static method yourself, you still have to include a

declaration for it, so that the projection short-circuit (the diagonal arrow) can call it. You

don’t have to implement it, though.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

