
1/3

May 4, 2021

C++ coroutines: Promise constructors
devblogs.microsoft.com/oldnewthing/20210504-00

Raymond Chen

So far, all of our coroutine promises have had only a default constructor. But the standard

actually gives the promise access to the coroutine parameters, if it wants them.¹

If somebody declares a coroutine that uses your promise, say,

simple_task<void> Awesome(int x, int y)

{

 ...

}

the compiler first looks for a promise constructor that accepts those parameters, prefixed if

applicable by the hidden *this parameter. In this example, it tries to construct a

simple_promise(x, y) . Standard overload rules apply, so the actual constructor could

take two integer lvalues, or one integer lvalue and one integer by value, or maybe it takes two

long s, since integers are implicitly convertible to long . This gives your coroutine an

opportunity to snoop on the parameters. For example, you might have a promise that detects

that one of the parameters is a Logger , in which case it uses that logging object for its own

internal logging.

If no suitable constructor can be found, then the compiler falls back to using the default

constructor for the promise.

You might say, “Well, that’s interesting, but it has no effect on me because my only

constructor is the default constructor, so that’s the only one the compiler will ever use.”

You’d be wrong.

Because the compiler will autogenerate a copy constructor.

Somebody could create a coroutine like this:

simple_task<void> Weirdo(simple_promise<void> wha)

{

 ...

}

https://devblogs.microsoft.com/oldnewthing/20210504-00/?p=105176

2/3

If they do that, then the compiler will look for a promise constructor that takes a

simple_promise<void> parameter, and it will find one: The copy constructor. The promise

for the coroutine will therefore be copy-constructed from the wha parameter, which is

probably not what you were expecting.

On the other hand, the fact that they are passing your private promise type as a parameter

suggests that they are intentionally messing with the internals and therefore deserve what

they get.

However, an unwitting developer might stumble into this case if they create a generic type

similar to std::any :

struct Object

{

 template<typename T>

 operator T() { return std::any_cast<T>(o); }

 template<typename T>

 Object& operator=(T&& other)

 { o = std::forward<T>(other); return *this; }

private:

 std::any o;

};

This is a generic type that can hold any value, and you can get the same value out by

converting to the thing you hope is inside.

Which means that it can try to convert to simple_promise .

simple_task<void> Print(Object o)

{

 ...

}

The compiler will see that an Object can be passed to the simple_promise copy

constructor, which will try to convert the Object to a simple_promise in order to copy

it. The conversion will (probably) fail with a std::bad_any_cast , and your program

crashes for a totally mysterious reason. You’ll be looking at the crash dumps wondering,

“Why is this code trying to convert my Object to a simple_promise ?”

Let’s fix that by explicitly denying copying.

3/3

 template<typename T>

 struct simple_promise_base

 {

 ...

 simple_promise_base() = default;

 simple_promise_base(simple_promise_base const&) = delete;

 void operator=(simple_promise_base const&) = delete;

 ...

 };

I’m going to declare this the nominal end of what turned into a 47-part series on coroutines,²

because I’m pretty sure you’re all sick of coroutines by now. There are still some other topics

related to coroutines that aren’t connected to this series, so you’re not out of the woods yet.

And there’s generators, which is deserving of its own series, but I’ll wait until the outrage dies

down.

¹ Be aware that this is a dark corner of the language specification that not all

implementations agree on. The specification says that the parameters are passed as lvalues,

but gcc passes them as their original reference class, and MSVC doesn’t pass them at all until

you upgrade to version 16.8 or higher, set /std:c++latest , and omit the legacy /await

flag.

I get the impression that the gcc behavior is a bug, rather than a feature, because setting -

pedantic does not cause gcc to switch to the standard-conforming behavior.

² Or 48 parts if you count the prologue article about E_ILLEGAL_DELEGATE_ASSIGNMENT.

Raymond Chen

Follow

https://devblogs.microsoft.com/cppblog/c-coroutines-in-visual-studio-2019-version-16-8/
https://devblogs.microsoft.com/oldnewthing/20210226-00/?p=104911
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

