
1/9

April 29, 2021

C++ coroutines: Adding COM context support to our
awaiter

devblogs.microsoft.com/oldnewthing/20210429-00

Raymond Chen

You may want to have awaiters that apply custom resume behavior. For example, in

Windows, you are likely to want your awaiter to preserve the COM thread context. For X11

programming, you may want to the awaiter to return to the render thread if the co_await

was initiated from the render thread. Today we’ll add the ability to customize the awaiter to

our coroutine promise type.

The idea is that instead of registering just a coroutine handle for resumption, we register

information that lets us resume the coroutine in some scenario-specific manner.

There are a couple of possible designs for this.

One is to register an object with a virtual resume() method, and we just call that resume

method when it’s time to resume the awaiting coroutine. This has the disadvantage of

introducing a virtual function call, which affects speculatability as well as adding a control

flow guard check due to the use of a function pointer.

Another option is to use a switch statement with one case for each type of resumption. This

avoids the virtual function call, but it also means that add a new kind of awaiter requires that

the base class be updated to understand it. Furthermore, it means that even if you don’t use a

particular awaiter, the code for it is still compiled into the promise, because the promise

doesn’t know at compile time which cases are going to end up being dead code at run time.

So I split the difference: I register a function pointer and a void* pointer. The function

pointer is called with the void* pointer to do whatever it needs in order to resume the

awaiting coroutine. This plug-in model makes the code pay-for-play: If you never use an

awaiter, its code doesn’t get compiled in. It also makes it easy to add new types of awaiters in

the future. To avoid paying for the function pointer call, we also adopt the special convention

that if the function pointer is nullptr , then the void* pointer is assumed to be the

address of the awaiting coroutine. This lets us take a function pointer call out of the common

case.

https://devblogs.microsoft.com/oldnewthing/20210429-00/?p=105165

2/9

namespace async_helpers::details

{

 template<typename T>

 struct simple_promise_base

 {

 void (*m_resumer)(void*);

 std::atomic<void*> m_waiting{ cold_ptr };

 simple_promise_result_holder<T> m_holder;

We add a “resumer” function pointer to our promise. This is the function that knows how to

resume a coroutine given the m_waiting pointer.

 void resume_waiting_coroutine(void* waiting) const

 {

 if (m_resumer)

 {

 m_resumer(waiting);

 }

 else

 {

 std::experimental::coroutine_handle<>::

 from_address(waiting).resume();

 }

 }

When it comes time to resume the waiting coroutine, we check if there is a custom resumer.

If so, then we call it with the waiting pointer and trust it to know what to do next.

Otherwise, we assume that the pointer is the address of a coroutine and just resume it.

We now teach our final awaiter about this new convention for resuming the awaiting

coroutine.

 auto final_suspend() noexcept

 {

 struct awaiter : std::experimental::suspend_always

 {

 simple_promise_base& self;

 void await_suspend(

 std::experimental::coroutine_handle<>)

 const noexcept

 {

 auto waiter = self.m_waiting.exchange(completed_ptr,

 std::memory_order_acq_rel);

 if (waiting != abandoned_ptr) self.destroy();

 if (waiting != running_ptr)

 self.resume_waiting_coroutine(waiting);

 }

 };

 return awaiter{ {}, *this };

 }

3/9

Instead of treating the waiting as a coroutine pointer, we ask resume_waiting_

coroutine to resume it in the awaiter-requested manner.

 auto client_await_suspend(

 void* waiting,

 void (*resumer)(void*) = nullptr)

 {

 m_resumer = resumer;

 assert(reinterpret_cast<uintptr_t>(waiting) >

 reinterpret_cast<uintptr_t>(cold_ptr));

 return m_waiting.exchange(waiting,

 std::memory_order_acq_rel) == running_ptr;

 }

 auto cold_client_await_suspend(

 void* waiting,

 void (*resumer)(void*) = nullptr)

 {

 start();

 client_await_suspend(waiting, resumer);

 }

Suspension requires the waiting pointer and an optional resumer function. If there is no

resumer function, then waiting is assumed to be a pointer to a coroutine. We assert that

the waiting doesn’t match any of our special sentinel values, so we won’t get confused

later.

Now we can update our awaiters:

4/9

 template<typename T>

 struct promise_awaiter

 {

 promise_ptr<T> self;

 bool await_ready()

 {

 return self->client_await_ready();

 }

 auto await_suspend(std::experimental::coroutine_handle<> handle)

 {

 return self->client_await_suspend(handle.address());

 }

 T await_resume()

 {

 return self->client_await_resume();

 }

 };

 template<typename T>

 struct cold_promise_awaiter

 {

 promise_ptr<T> self;

 bool await_ready()

 {

 return self->cold_client_await_ready();

 }

 auto await_suspend(std::experimental::coroutine_handle<> handle)

 {

 return self->cold_client_await_suspend(handle.address());

 }

 T await_resume()

 {

 return self->client_await_resume();

 }

 };

The awaiters pass the coroutine by address rather than handle.

Now that we have the plug-in model set up, we can add a new kind of awaiter, which I’ll call a

com_promise_awaiter . This one ensures that we resume in the same COM context.

5/9

 template<typename T>

 struct com_promise_awaiter

 {

 com_promise_awaiter(promise_ptr<T>&& ptr)

 : self(std::move(ptr))

 {

 }

 promise_ptr<T> self;

 std::experimental::coroutine_handle<> waiter;

 wil::com_ptr<IContextCallback> context;

 bool await_ready()

 {

 return self->client_await_ready();

 }

 auto await_suspend(std::experimental::coroutine_handle<> handle)

 {

 waiter = handle;

 THROW_IF_FAILED(CoGetObjectContext(IID_PPV_ARGS(&context)));

 return self->client_await_suspend(this, resume_in_context);

 }

 T await_resume()

 {

 return self->client_await_resume();

 }

 static auto as_self(void* p)

 {

 return reinterpret_cast<com_promise_awaiter*>(p);

 }

 static void resume_in_context(void* parameter)

 {

 as_self(parameter)->resume_context();

 }

 void resume_context()

 {

 ComCallData data{};

 data.pUserDefined = this;

 auto local_context = std::move(context);

 THROW_IF_FAILED(local_context->ContextCallback(

 resume_apartment_callback, &data,

 IID_ICallbackWithNoReentrancyToApplicationSTA, 5, nullptr));

 }

 static HRESULT CALLBACK resume_apartment_callback(

 ComCallData* data) noexcept

 {

6/9

 as_self(data->pUserDefined)->waiter();

 return S_OK;

 }

 };

Most of this code is related to COM context management and doesn’t really illustrate the

point that we have a plug-in model for awaiting.

The magic happens in the await_suspend method: We remember the handle to resume in

our new waiter member variable, and capture the current COM context in the new

context member variable. Once that’s done, we can call client_await_suspend , but

instead of passing the coroutine handle, we pass our own address, and also pass a custom

resumer function, which we’ve called resume_in_context .

When it’s time to resume the awaiting coroutine, the resume_in_context function

recovers the original com_promise_awaiter and asks the context to resume execution

in the captured context. The resume_apartment_callback runs in that captured context,

and it resumes the coroutine.

There is a subtlety here: The awaiting coroutine resumes once we invoke waiter() , and at

resumption, the coroutine will destruct the com_promise_awaiter . If we hadn’t captured

context into local_context , that would have resulted in the context being destroyed

while its ContextCallback method was still running, a violation of one of the basic rules of

programming, namely that function parameters are stable for the lifetime of the function call.

(In this case, the function parameter is the implied this pointer.) Capturing it into a local

variable prevents the context from being destructed when the com_promise_awaiter

destructs, and instead waits until ContextCallback returns.

The above code is an illustration, and it does technically work, but there are a number of

optimizations that a real program would want to perform to avoid unwanted stack build-up

or to avoid the synchronous apartment-changing callback problem we discussed some time

ago. Patching up these problems is an important exercise, but not really within the scope of

this series on coroutines.

We can now hook up this new promise to a com_aware_task .

https://devblogs.microsoft.com/oldnewthing/20191220-00/?p=103232

7/9

namespace async_helpers

{

 template<typename T>

 struct com_aware_task : details::simple_task_base<T>

 {

 using base = details::simple_task_base<T>;

 com_aware_task() = default;

 com_aware_task(details::simple_promise<T>* initial)

 : base(initial) { this->promise->start(); }

 void swap(com_task& other)

 {

 std::swap(this->promise, other.promise);

 }

 using base::operator co_await;

 auto operator co_await() &&

 {

 return details::com_promise_awaiter<T>

 { std::move(this->promise) };

 }

 };

 template<typename T>

 void swap(com_aware_task<T>& left, com_aware_task<T>& right)

 {

 left.swap(right);

 }

}

template <typename T, typename... Args>

struct std::experimental::coroutine_traits<async_helpers::com_aware_task<T>, Args...>

{

 using promise_type = async_helpers::details::simple_promise<T>;

};

This is identical to our simple_task except that its co_await operator uses a com_

promise_awaiter instead of a a promise_awaiter .

Since the simple_task and com_aware_task differ only in their co_await , we can

actually make them use each other’s awaiter.

8/9

namespace async_helpers::details

{

 template<typename T>

 struct simple_task_base

 {

 ...

 auto resume_same_context() &&

 {

 return com_promise_awaiter<T>

 { std::move(promise) };

 }

 auto resume_any_context() &&

 {

 return promise_awaiter<T>

 { std::move(promise) };

 }

 ...

 };

}

namespace async_helpers

{

 template<typename T>

 struct simple_task : details::simple_task_base<T>

 {

 ...

 auto operator co_await() &&

 {

 return std::move(*this).resume_any_context();

 }

 };

 template<typename T>

 struct com_aware_task :

 {

 ...

 auto operator co_await() &&

 {

 return std::move(*this).resume_same_context();

 }

 };

}

This means that if you have a simple_task or com_aware_task , but you want to

resume in a context different from the one that you normally get with co_await , you can

ask explicitly for the awaiter that gives you the behavior you desire:

9/9

extern async_helpers::simple_task<void> Something1Async();

// resumes in any context by default

co_await Something1Async();

// same as above, but more explicit

co_await Something1Async().resume_any_context();

// forces resumption in same COM context

co_await Something1Async().resume_same_context();

extern async_helpers::com_aware_task<void> Something2Async();

// resumes in same COM context by default

co_await Something2Async();

// same as above, but more explicit

co_await Something2Async().resume_same_context();

// forces resumption in any context

co_await Something2Async().resume_any_context();

We’ll look at synchronous waits next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

