
1/5

April 28, 2021

C++ coroutines: Snooping in on the coroutine body
devblogs.microsoft.com/oldnewthing/20210428-00

Raymond Chen

A coroutine promise can snoop on the coroutine body by implementing a method named

await_transform . Any time the coroutine body performs a co_await , the thing being

awaited is passed through the await_transform  method, and whatever await_

transform  returns is the thing that is actually awaited. This is the mysterious “We’re not

ready to talk about step 1 yet” that kept reappearing in our introduction to awaitable objects.

One way that await_transform  is used is to provide the coroutine body a way to

communicate with the promise, by co_await ‘ing an object with a sentinel type. This is the

magic behind secret signals like co_await get_cancellation_token().

Let’s use this to allow the coroutine to configure the promise’s unhandled_exception

behavior.

https://devblogs.microsoft.com/oldnewthing/20210428-00/?p=105160
https://devblogs.microsoft.com/oldnewthing/20191218-00/?p=103221
https://devblogs.microsoft.com/oldnewthing/20200722-00/?p=103997


2/5

namespace async_helpers::details

{

   struct simple_promise_policies

   {

       bool m_terminate_on_unhandled_exception = false;

   };

}


namespace async_helpers

{

   template<typename T>

   struct simple_task;


   struct simple_task_policy

   {

       simple_task_policy(details::simple_promise_policies& policies)

           : m_policies(policies) {}


       bool terminate_on_unhandled_exception(bool value = true)

           const noexcept

       {

           return std::exchange(

               m_policies.m_terminate_on_unhandled_exception,

               value);

       }

   private:

       details::simple_promise_policies& m_policies;

   };


   struct get_simple_task_policy {};

}


We start by declaring a private structure simple_promise_policies  to hold our simple

promise policies. So far, the only policy is whether to terminate on unhandled exception. You

can imagine adding additional runtime policies here when they occur to you.

We then provide a public structure simple_task_policy  that wraps the private one. This

is what the coroutine itself uses to alter the behavior of the promise.

For now, there is only one method on the policy object, namely terminate_on_

unhandled_exception()  which specifies whether you want the coroutine to terminate if

an unhandled exception occurs. The default is true , and the method returns the previous

setting in case you want to restore it later.

Finally, we define a marker structure get_simple_task_policy . The purpose of this

structure will become apparent later.



3/5

namespace async_helpers::details

{

   template<typename T>

   struct simple_promise_base

   {

       ...

       simple_promise_policies m_policies;


       ...


       void unhandled_exception() noexcept

       {

           if (m_policies.m_terminate_on_unhandled_exception)

           {

               std::terminate();

           }

           m_holder.unhandled_exception();

       }

       ...


We add a policies object to our simple_promise_base , and the unhandled_exception

method consults the policy to decide whether to terminate when an unhandled exception

occurs, or whether to stow the exception in the holder for later rethrowing when the

coroutine is co_await ed.

       // still in struct simple_promise_base<T>

       auto await_transform(get_simple_task_policy) noexcept

       {

           struct awaiter : std::experimental::suspend_never

           {

               simple_promise_policies& policies;

               auto await_resume() const noexcept

               {

                   return simple_task_policies(policies);

               }

           };

           return awaiter{ {}, m_policies };

       }


This is where the magic happens, the mysterious step 1.

If the coroutine promise has a method called await_transform , then every co_await  is

passed to the await_transform  method, and the thing it returns is the thing that is

actually awaited. This is how the coroutine promise can snoop on all co_await  activity that

occurs inside the coroutine body.

One use of await_transform  is for the coroutine to inject some code at every potential

suspension point. For example, it could do some extra bookkeeping when suspension occurs,

and again when the coroutine resumes.



4/5

That’s not what we’re going to use it for, though.

In our case, we have an overload that takes a get_simple_task_policy  object. Any

attempt to co_await  one of those objects will trigger a call to this overload of await_

transform , and the overload ignores the parameter and instead returns a custom awaitable

whose sole purpose is to return a simple_task_policies  object that wraps the promise’s

policy object.

That’s what makes await_transform  special: Your basic awaitable object doesn’t know

what coroutine is awaiting it. But await_transform  is a member of the promise, and

therefore it can create an awaitable that is in cahoots with its promise.

It is typical for the custom awaiter for these backchannel communications awaitables not to

suspend at all and just produce the desired value in the await_resume .

A coroutine that uses the simple_promise  can use this secret signal like this:

async_helpers::simple_task<void> Example()

{

   auto policy = co_await

       async_helpers::get_simple_task_policy();

}


There appear to be a few schools of thought on how these secret signals should be made.

One school uses marker structures with default constructors. That’s what we did here

with get_simple_task_policy .

Another school uses marker structures that are returned by purpose-built functions.

That’s how C++/WinRT does things.

A third school of thought uses premade sentinel objects.

An implementation that follow the second school would go like this:

struct get_simple_task_policy_t {};

inline constexpr get_simple_task_policy_t

get_simple_task_policy()

{

   return {};

}


async_helpers::simple_task<void> Example()

{

   auto policy = co_await

       async_helpers::get_simple_task_policy();

}


The inline function get_simple_task_policy()  returns an instance of the marker.



5/5

An implementation that followed the third school would go like this:

struct get_simple_task_policy_t {};

inline constexpr get_simple_task_policy_t get_simple_task_policy;


async_helpers::simple_task<void> Example()

{

   auto policy = co_await

       async_helpers::get_simple_task_policy;

}


An advantage of the first two designs is that you can parameterize the secret signal. For

example, you could have

co_await report_progress(50);


to report that you were 50% done.

An advantage of the third design is that it removes a set of pesky parentheses.

Unfortunately, we can’t just stop there, because the language rules say that await_

transform  is all-or-nothing. If you have any await_transform  method, then you must

handle all possible awaitables. In order to soak up the other awaitables and pass them

through, we need to add

       // in struct simple_promise_base<T>

       template<typename U>

       U&& await_transform(U&& awaitable) noexcept

       {

           return static_cast<U&&>(awaitable);

       }

   }


The await_transform  lets you insert code into every co_await  operation, but sadly the

mechanism to do this is quite cumbersome because wrapping the existing awaitable requires

you first to find the awaitable by replicating the algorithm used by the compiler. You end up

having to do a bunch of SFINAE to look for a co_await  operator that will produce the

awaitable you need to wrap, or give up and use the object as its own awaiter. (And good luck

expressing the operator overload conflict resolution algorithm in template

metaprogramming.)

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

