
1/2

April 27, 2021

C++ coroutines: How do I create a coroutine that
terminates on an unhandled exception?

devblogs.microsoft.com/oldnewthing/20210427-00

Raymond Chen

Last time, we saw that declaring a coroutine as noexcept doesn’t do what you think. The

noexcept specific says that production of the coroutine does not throw an exception, but it

says nothing about what happens during execution of the coroutine. If an exception occurs

inside the coroutine, the promise’s unhandled_exception method decides what happens.

So what can you do if you really want your coroutine to terminate on unhandled exception?

One way is to reimplement noexcept manually by catching all exceptions and terminating.

simple_task<int> GetValueAsync()

{

 try {

 co_return LoadValue();

 } catch (...) {

 std::terminate();

 }

}

If an exception occurs in LoadValue() , it is caught by the catch (...) and terminates

the program.

You can avoid a level of indentation by moving the try to function scope:

simple_task<int> GetValueAsync() try

{

 co_return LoadValue();

} catch (...) {

 std::terminate();

}

This has the desired effect of terminating on unhandled exceptions, but it’s kind of awkward

having to wrap the function like this, and it also gets awkward if you want to turn the

behavior on for only certain sections of the code.

https://devblogs.microsoft.com/oldnewthing/20210427-00/?p=105157
https://devblogs.microsoft.com/oldnewthing/20210426-00/?p=105153

2/2

The behavior of a coroutine in the case of an unhandled exception is left to the discretion of

the coroutine promise. Some promises (like winrt::fire_and_forget) terminate on

unhandled exceptions. Others (like our simple_task) stow the exception and rethrow

when the task is co_await ed. Perhaps there’s a way to configure the coroutine promise at

runtime to alter its behavior. We’ll look at that next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

