
1/2

April 26, 2021

C++ coroutines: What does it mean when I declare my
coroutine as noexcept?

devblogs.microsoft.com/oldnewthing/20210426-00

Raymond Chen

Suppose you want a coroutine that terminates on unhandled exceptions, or equivalently

(looking at it from the consumer side) a coroutine that never throws an exception when

awaited. For regular functions, the way to say this is to put the noexcept exception

specification on your function declaration:

int GetValue() noexcept

{

 return LoadValue();

}

If the LoadValue() function raises an exception, the exception propagation stops at the

noexcept and turns into a std::terminate , which is a fatal error that terminates the

application.

Looking at the contract from the other side, the noexcept specification tells the caller that

no exceptions can escape the GetValue() function, so the caller can optimize accordingly.

GetValue() will get you a value or die trying.

Okay, so what happens when you apply this to a coroutine?

simple_task<int> GetValueAsync() noexcept

{

 co_return LoadValue();

}

If an exception is thrown by the LoadValue() function, the exception is captured into the

simple_task and is rethrown when the task is co_await ed.

Wait a second. I put the noexcept keyword on this function. Certainly that means that any

unhandled exception in the function terminates the program, right?

Yes, that’s what it means, but your coroutine isn’t the function.

https://devblogs.microsoft.com/oldnewthing/20210426-00/?p=105153

2/2

The function is the thing that returns a simple_task . And the noexcept says that the

GetValueAsync() function can successfully return a simple_task without raising an

exception.

Look at this from the caller’s point of view: The caller sees only

simple_task<int> GetValueAsync() noexcept;

This is not a coroutine definition. This is just a function prototype. The caller doesn’t know

how GetValueAsync() is going to produce that simple_task . The implementation could be

simple_task<int> GetValueAsync() noexcept

{

 return simple_task<int>(constructor parameters);

}

Just the usual case of returning a constructed object. No coroutines involved at all.

If GetValueAsync() is implemented as a coroutine, then any unhandled exception is

passed to the coroutine promise’s unhandled_exception method, and it’s up to the

promise to decide what to do next.

So what can you do if you really want your coroutine to terminate on unhandled exception?

We’ll look at that next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

