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In an earlier installment, we simplified our promise_ptr type, and one of the consequences

of this is that there are no remaining caller of increment_ref . This means that we don’t

need a reference count at all and can rely on the state changes to tell us when to destroy the

promise: When the awaiter has obtained the result or, or when the coroutine completes and

discovers that the awaiter has abandoned its effort to obtain the result.

This means that we need a new sentinel value to mean “abandoned”.

If I could target C++20, then I would have noop_coroutine_handle  available to use for

another sentinel value.¹ But I want to be able to run on MSVC’s coroutine implementation in

C++17, so that’s off the table.

I can’t think of another coroutine handle that we can use for our new sentinel value, so I’m

going to use a trick: Coroutine handles can be converted to and from void* , and the

void*  represents the “address” of the coroutine, for some unspecified meaning of address.

If we assume that the term address means that the result must be the address of something,

then we can convert all of our coroutine handles to void* , and our sentinel values become

pointers that are known not to point to a valid coroutine. We can’t use our this  pointer,

because the coroutine might have the promise as its first member, and that would make the

addresses match. Similarly, we can’t use the address of the promise’s first nonstatic member

variable. But we could use a pointer to a second or subsequent nonstatic member variable

(assuming it isn’t marked as [[no_unique_address]] ). Or we could declare some static

variables for the sole purpose of providing unique addresses.

But instead, I’m going to use some hard-coded invalid pointer values, like (void*)1 ,

because the code generation for them will be more efficient.

Okay, so our values are

nullptr  if the coroutine is running and nobody is awaiting (“started”).

(void*)1  if the coroutine has completed (“completed”).

address  if another coroutine is awaiting (“awaiting”).
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(void*)2  if the awaiter has been abandoned (“abandoned”).

We have two life cycles running in parallel: One of the life cycle of the coroutine body, and

the other is the life cycle of the task. The coroutine body will eventually complete. The task

will usually (but not always) be awaited, and then will always be abandoned.

In other words, we have started → awaiting (maybe) → abandoned, and the completed step

can be inserted at any arrow.

The results are

started → completed → awaiting → abandoned: This is the case where the coroutine

completes before anybody can await on it.

started → awaiting → completed → abandoned: This is the common case where the

task is awaited before it completes.

started → awaiting → abandoned → completed: This case is not possible because the

awaiting phase will always wait for completed before continuing to abandoned.

started → completed → abandoned: This is the case where the coroutine completes

before the task is abandoned without ever having been awaited.

started → abandoned → completed: This is the case where the coroutine is abandoned

before it completes.

Studying the four legal transition sequences leads to this state transition action chart:

From
To

completed awaiting abandoned

started Do nothing Do nothing Do nothing

completed   Resume awaiter Destroy promise

awaiting Resume awaiter    

abandoned Destroy promise    

Okay, now we can implement the diagrams.
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   template<typename T>

   struct simple_promise_base

   {

       using Promise = simple_promise<T>;

       auto as_promise() noexcept

       {

           return static_cast<Promise*>(this);

       }


       std::atomic<uint32_t> m_refcount{ 2 };

       // std::mutex m_mutex;

       std::atomic<void*> m_waiting{ running_ptr };

       simple_promise_result_holder<T> m_holder;


       static constexpr void* running_ptr = nullptr;

       static constexpr void* completed_ptr = reinterpret_cast<void*>(1);

       static constexpr void* abandoned_ptr = reinterpret_cast<void*>(2);


       ...


       // void increment_ref() noexcept

       // {

       //     m_refcount.fetch_add(1, std::memory_order_relaxed);

       // }

       // 

       // void decrement_ref() noexcept

       // {

       //     auto count = m_refcount.fetch_sub(1,

       //         std::memory_order_release) - 1;

       //     if (count == 0)

       //     {

       //         std::atomic_thread_fence(std::memory_order_acquire);

       //         as_handle().destroy();

       // }


       void destroy()

       {

           as_handle().destroy();

       }


       void abandon()

       {

           auto waiting = m_waiting.exchange(abandoned_ptr,

               std::memory_order_acquire);

           if (waiting != running_ptr) destroy();

       }


       ...


       auto final_suspend() noexcept

       {

           struct awaiter : std::experimental::suspend_always
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           {

               simple_promise_base& self;

               void await_suspend(

                   std::experimental::coroutine_handle<> /* handle */)

                   const noexcept

               {

                   auto waiter = self.m_waiting.exchange(completed_ptr,

                       std::memory_order_acq_rel);

                   // self.decrement_ref();

                   if (waiting == abandoned_ptr) self.destroy();

                   else if (waiting != running_ptr) std::experimental::

                       coroutine_handle<>::from_address(waiting).resume();

               }

           };

           return awaiter{ {}, *this };

       }


       bool client_await_ready()

       {

           auto waiting = m_waiting.load(

               std::memory_order_acquire);

           assert(waiting == running_ptr || waiting == completed_ptr);

           return waiting != running_ptr;

       }


       auto client_await_suspend(

           std::experimental::coroutine_handle<> handle)

       {

           return m_waiting.exchange(handle.address(),
               std::memory_order_acq_rel) == running_ptr;

       }


       ...

   };


   struct promise_deleter

   {

       void operator()(simple_promise_base<T>* promise) const noexcept

       {

           promise->abandon();

       }

   };


We define a few constants to represent our sentinel addresses for the completed and

abandoned states. The remaining methods follow our flowchart above to change to the new

state and inspect the previous state to see what action needs to be taken.

Abandoning the promise needs acquire semantics so that the values used in the destruction

of the promise are not fetched prematurely.
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Does abandoning the promise require release semantics? That would be the case if our

transition to the abandoned state could cause another thread to destroy the promise. We

need to make sure our modifications to the promise (say, due to us having moved resources

out of it) are visible to the other thread.

In the cases where abandonment leads directly to destruction, we don’t need release

semantics because we are the one who will destroy the promise. The only remaining case is

where the coroutine is abandoned before it completes, and in that case, we haven’t made any

changes to the promise, so there is nothing that needs to get flushed out.

Therefore, my conclusion is that we do not need release semantics on abandonment. (I could

be wrong.)

The next interesting point is the completion of the coroutine in the final_suspend  awaiter.

When we set the value to completed_ptr , we need release semantics in case there is no

awaiter yet, to ensure that the result of the coroutine is properly published to the eventual

awaiter. And we need acquire semantics in case there is an awaiter already registered, so that

we use the values that were published when the awaiter registered itself with the promise.

In client_await_ready , we check whether the coroutine has already completed by

peeking at the state in m_waiting . We do this with acquire semantics so that, in the event

the answer is “Already completed”, we will read the values that were published at completion.

In client_await_suspend , we publish the awaiter with release semantics so that the

suspension of the awaiting coroutine is published to the thread that will resume it. And we

also do it with acquire semantics, so that we can read the results from m_holder  in the case

that the coroutine has already completed.

And finally, the promise_deleter  now calls abandon  instead of decrement_ref .

Okay, that eliminates our reference count. Next time, we’ll eliminate the atomic variable that

we use to remember what’s in the result holder object.

Bonus chatter: You may have noticed that getting rid of the reference count also fixes the

problem of an awaiting coroutine being destroyed while suspended: If that happens, the

promise_ptr  in the awaiter is destructed, and that abandons the coroutine. This means

that when the coroutine completes, it will see that nobody is awaiting and won’t try to resume

a destroyed awaiting coroutine.

¹ Note, however, that there is no requirement that the noop_coroutine_handle  be

unique, so we would have to keep a well-known handle in our class that everybody agrees to

use. This adds another memory access to our code paths which check for the sentinel value.
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