
1/3

April 15, 2021

C++ coroutines: Getting rid of our mutex
devblogs.microsoft.com/oldnewthing/20210415-00

Raymond Chen

Our coroutine implementation uses a mutex to guard against the race condition where a

coroutine completes at the same time another thread tries to wait for its completion. The race

condition in question is this one:

Awaiter Completer

if coroutine has not yet completed {

 Mark coroutine as completed

 Resume anyone who is waiting

Sign up to be resumed }

If this race condition is realized, then you have a coroutine that has signed up to be resumed,

but the completion of the coroutine failed to resume it. The awaiter never wakes up.

But we can solve this race condition without a lock: We just need to have two special sentinel

values: One for the initial state where the coroutine has not yet completed, nor has an awaiter

registered for resumption. Another to mean that the coroutine has completed, but no awaiter

has registered yet. The third case is where the awaiter has registered, but the coroutine hasn’t

completed: For that, we will use the awaiter’s coroutine handle.

The completer exchanges the value with the “completed” sentinel value to indicate that the

coroutine has completed, and if the old value was not the initial value, then it means that

there is a continuation, and the completer resumes the awaiter.

The awaiter exchanges the value with the continuation, and if the old value was “completed”,

then it resumes itself immediately.

So now we have to find two values to use as sentinel values.

https://devblogs.microsoft.com/oldnewthing/20210415-00/?p=105109
https://devblogs.microsoft.com/oldnewthing/20210330-00/?p=105019

2/3

We’ve already been using one sentinel value: nullptr is a sentinel value that means that

the coroutine has started but no awaiter has registered. We just need to find another one.

And it turns out it was right under our noses: We can use the running coroutine itself! The

running coroutine will never await itself, so we can use its own handle as our second sentinel.

Okay, now that we have our plan, let’s go implement it.

 template<typename T>

 struct simple_promise_base

 {

 ...

 // std::mutex m_mutex;

 // std::experimental::coroutine_handle<> m_waiting{ nullptr };

 std::atomic<std::experimental::coroutine_handle<>>

 m_waiting{ nullptr };

 simple_promise_result_holder<T> m_holder;

 ...

 auto final_suspend() noexcept

 {

 struct awaiter : std::experimental::suspend_always

 {

 simple_promise_base& self;

 void await_suspend(

 std::experimental::coroutine_handle<> handle)

 const noexcept

 {

 auto waiter = self.m_waiting.exchange(handle,

 std::memory_order_acq_rel);

 self.decrement_ref();

 if (waiter) waiter.resume();

 }

 };

 return awaiter{ {}, *this };

 }

 ...

 auto client_await_suspend(

 std::experimental::coroutine_handle<> handle)

 {

 return m_waiting.exchange(handle,

 std::memory_order_acq_rel) == nullptr;

 }

 ...

 };

For the client_await_suspend , we return true (meaning that we should suspend) if

the coroutine hasn’t completed yet, which we detect by noticing that the previous value of

m_waiting is null, representing the fact that the coroutine is still running.

3/3

The exchange when the coroutine completes uses releases semantics because we need to

ensure that the results are published before we announce that the results are ready. This

covers the case where the coroutine completes before the client gotten around to calling

co_await : In that case, the client will observe that the coroutine is complete and

immediately try to read the results. We need to make sure the results are published for the

client to read.

The exchange when the coroutine completes also uses acquire semantics because we need to

ensure that we don’t try to load any state from the handle we’re about to resume until we’ve

atomically obtained it.¹

The exchange when suspending the awaiting coroutine uses release semantics for a similar

reason: We want to make sure the suspension of the awaiting coroutine has been published

before we publish the awaiting coroutine handle for the promise coroutine to use.

And the exchange when suspending the awaiting coroutine also uses acquire semantics to

match the release semantics when the coroutine completes: If the coroutine has just

completed, we need to make sure we read the freshly-published result.

But we finally did it. We got our simple promise and simple task to be lock-free.

It turns out our simplification of promise_ptr had other consequences. We’ll explore them

next time.

¹ This seems like an odd thing to have to protect against. How can we possibly load any state

from the handle we’re about to resume before we obtain the handle? Can the CPU predict the

future and load a value dependent upon an address it hasn’t obtained yet?

Maybe,² but even in the absence of time travel (or really good speculation), it’s possible that

the memory is cached locally on the CPU from some previous usage, and we need to make

sure that the cached value is not used and new values are loaded afresh.

² The answer is “Yes”. This behavior is permitted by the Alpha AXP memory model. And it

happens for basically the reason I gave above: The value at the dependent address is locally

cached.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20210414-00/?p=105095
https://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

