
1/5

April 14, 2021

C++ coroutines: Making it impossible to co_await a task
twice

devblogs.microsoft.com/oldnewthing/20210414-00

Raymond Chen

One design limitation of the coroutine implementation we’ve been developing is that it

supports only one co_await client. We enforce this with a runtime assertion, but what if

the problem occurs in the release build?

If the two co_await clients are concurrent, then the second one overwrites the

m_waiting member that was set by the first. When the coroutine completes, only the

second one is woken, and the first one remains suspended forever.

If the two co_await clients are sequential, so that the second call occurs after the coroutine

has completed, then the second call bypasses the suspend and goes straight to await_

return , where it receives the contents of a moved-from variable. Depending on what kind

of object that variable represents, it could mean that the second caller gets a copy (if the

object doesn’t have a move copy constructor), or it could mean that the second caller gets an

empty object (if the moved-from object is left empty), or it could mean that the second caller

gets some sort of garbage (unlikely for move copy constructor, but technically legal).

Both of these errors are hard to diagnose. In the first case, one of the tasks just stops and

makes no further progress. In the second case, one of the tasks gets unreliable results.

So let’s make it easier to diagnose.

We made the mistake of making the task copyable. It wraps a reference-counted pointer, and

copying increases the reference count. But really, when some code has a task and it passes

the task to another component, it needs to coordinate ownership of the task with the other

component so that only one co_await is ultimately peformed.

In C++, ownership is typically represented by a move-only object like a unique_ptr . If you

want to transfer ownership, you std::move the object to the recipient.

So let’s make our task a move-object object. This makes it impossible to have two references

to the same promise, which would otherwise tempt you to co_await twice. What’s more,

let’s make the co_await operation a destructive operation by having it consumes the move-

https://devblogs.microsoft.com/oldnewthing/20210414-00/?p=105095
https://devblogs.microsoft.com/oldnewthing/20210330-00/?p=105019

2/5

only object, leaving it empty. Once you await the task, the task object becomes null, and a

subsequent co_await on the same task object will crash immediately.

First, let’s fix our definition of promise_ptr . As a nice side-effect, it involves deleting a lot

of code because our custom promise_ptr disappears.

 struct promise_deleter

 {

 void operator()(simple_promise_base<T>* promise) const noexcept

 {

 promise->decrement_ref();

 }

 };

 template<typename T>

 using promise_ptr = std::unique_ptr<simple_promise_base<T>, promise_deleter<T>>;

Our promise_ptr is now just a unique_ptr with a custom deleter which calls

decrement_ref .

Making promise_ptr a move-only object causes the simple_task to become a move-only

object since contains a promise_ptr as a member.

And then we make the co_await operator require an rvalue reference, so that it consumes

the promise rather than merely referencing it.

 template<typename T>

 struct simple_task

 {

 ...

 auto operator co_await &&

 {

 ...

 }

 ...

 };

Suffixing the function declaration with && means that it applies only to rvalue references.

simple_task<Result> task = SomeFunctionReturningSimpleTask();

DoSomethingElseInTheMeantime();

co_await task; // does not compile

The error message is the somewhat baffling

error C3312: no callable 'await_resume' function found for type 'simple_task<Result>'

3/5

And that’s if you’re lucky. If you are performing the co_await from a coroutine provided by

some other library, then the error message will depend on the library (for reasons we will

learn later). For example, if you are doing this from a C++/WinRT IAsyncAction or

IAsyncOperation , you get

error C2672: 'get_awaiter': no matching overloaded function found

The compiler is trying to figure out how to co_await a simple_task lvalue, and it can’t

find anything.

We once again enter the weird world of compiler error message metaprogramming.

I came up with this:

 template<typename T>

 struct simple_task

 {

 ...

 struct cannot_await_lvalue_use_std_move {};

 cannot_await_lvalue_use_std_move operator co_await() & = delete;

 ...

 };

If we provide no way to await an lvalue, then the compiler will report an error based on

where in the evaluation process it finally got stuck. So let’s make it get stuck at a predictable

place, with a name we get to control.

error C3312: no callable 'await_resume' function found for type
'simple_task<Result>::cannot_await_lvalue_use_std_move'

The C++/WinRT custom awaiter error message remains, however. We can hack around this

by fooling C++/WinRT into thinking that we are awaitable, and then get the compiler to

generate the error message that contains our custom error message disguised as a class

name.

 struct cannot_await_lvalue_use_std_move { void await_ready() {} };

The error message is now

error C2039: 'await_resume': is not a member of 'simple_task<Result>::
cannot_await_lvalue_use_std_move'

That’s a little better.

Okay, so I left a bunch of ... inside the body of operator co_await && . We need to

move the promise_ptr into the awaiter, and that means having to do some restructuring of

the promise’s awaiter code. Nothing essential has changed; we just need to appease the

compiler.

4/5

To avoid a circular reference between the simple_promise and the promise_ptr , I’ll

pull the awaiter out into a separate class and have it forward its methods back into the

promise. The order of declaration is

simple_promise_base

promise_ptr

promise_awaiter

 template<typename T>

 struct simple_promise_base

 {

 ...

 // auto get_awaiter()

 // { ... }

 ...

 };

 struct promise_deleter

 {

 void operator()(simple_promise_base<T>* promise) const noexcept

 {

 promise->decrement_ref();

 }

 };

 template<typename T>

 struct promise_awaiter

 {

 promise_ptr<T> self;

 bool await_ready()

 {

 return self->client_await_ready();

 }

 auto await_suspend(std::experimental::coroutine_handle<> handle)

 {

 return self->client_await_suspend(handle);

 }

 T await_resume()

 {

 return self->client_await_resume();

 }

 };

5/5

We take the get_awaiter anonymous awaiter and give it a name: promise_awaiter .

This promise_awaiter is a separate class (avoiding the circular reference), and it retains

its self in the form of a promise_ptr . This causes the promise to be released when the

awaiter destructs at the end of the co_await .

Now we can fill in those missing dots.

 template<typename T>

 struct simple_task

 {

 ...

 auto operator co_await &&

 {

 return details::promise_awaiter<T>

 { std::move(promise) };

 }

 ...

 };

We can now write

simple_task<Result> task = SomeFunctionReturningSimpleTask();

DoSomethingElseInTheMeantime();

co_await std::move(task); // explicit move

The explicit std::move makes it clear that you are giving the task to co_await , and that

the task is no longer usable after that point. Furthermore, if you try to co_await it, you will

take a null pointer exception since the task is now empty. We used to have a mysterious bug

where co_await sometimes seemed to hang, or sometimes produced incorrect results. Now

we have an immediate crash, which is much easier to diagnose.

Next time, we’ll get rid of the mutex that protects the coroutine_handle<> which records

the continuation.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

