C++ coroutines: Making the promise itself be the shared
state, the outline

=. devblogs.microsoft.com/oldnewthing/20210405-00

April 5, 2021

A
Raymond Chen

Last time, we got the idea of putting the result holder state directly inside the coroutine state.
This time, we’ll set to work on the implementation.

A restriction we are placing on our simple task isthatitcanbe co_await ed only once.
This enables the return of a move-only object, and avoid potentially-expensive copy
operations. It also discourages some inefficient usage patterns, which we’ll discuss later.

I'll present the code without some of the annoying bits, and then we’ll spend the next few
days filling it in. The code is conceptually simple, but there’s a lot of paperwork. Placeholders
are marked with [brackets].

1/8


https://devblogs.microsoft.com/oldnewthing/20210405-00/?p=105054
https://devblogs.microsoft.com/oldnewthing/20210402-00/?p=105047

namespace async_helpers

{
template<typename T> struct simple_task;
}
namespace async_helpers::details
{

template<typename T> struct simple_promise;
[simple_promise_result_holder definition]

template<typename T>
struct simple_promise_base
{
std::atomic<uint32_t> m_refcount{ 2 };
std: :mutex m_mutex;
std::experimental::coroutine_handle<> m_waiting{ nullptr };
simple_promise_result_holder<T> m_holder;

using Promise = simple_promise<T>;

auto as_promise() noexcept

{

return static_cast<Promise*>(this);

[simple_promise_base reference count methods]

auto get_return_object() noexcept

{
return simple_task<T>(as_promise());
}
std::experimental: :suspend_never initial_suspend() noexcept
{
return {};
}
template<typename...Args>
void set_value(Args&&... args)
{
m_holder.set_value(std::forward<Args>(args)...);
}
void unhandled_exception() noexcept
{
m_holder.unhandled_exception();
}
auto final_suspend() noexcept
{
[return an awaiter that decrements the reference count
and resumes any awaiting coroutine]
}

2/8



[awaiter support methods]

auto get_awaiter() noexcept

{

[return an awaiter that waits for the coroutine
to complete]

1

template<typename T>
struct simple_promise : simple_promise_base<T>

{
[implement return_value]
iy
template<>
struct simple_promise<void> : simple_promise_base<void>
{
[implement return_void]
}

// promise_ptr<T> is a reference-counted
// pointer to a simple_promise<T>
[implement promise_ptr]

namespace async_helpers

{

template<typename T>
struct simple_task

{
details::promise_ptr<T> promise;
simple_task(details::simple_promise<T>*
initial = nullptr) : promise(initial) {}

void swap(simple_task& other)

{

std::swap(promise, other.promise);

auto operator co_await() const

{

return promise->get_awaiter();

}i

template<typename T>
void swap(simple_task<T>& left, simple_task<T>& right)

{
left.swap(right);

3/8



template <typename T, typename... Args>
struct std::experimental::coroutine_traits<
async_helpers::simple_task<T>, Args...>

using promise_type =
async_helpers::details::simple_promise<T>;

1

I put it all out there at one go just to highlight the overall shape. But let’s go through it more
slowly.

template<typename T>
struct simple_promise_base

{

std::atomic<uint32_t> m_refcount{ 2 };

The initial reference count of the promise is two: One reference is held by the coroutine itself
because the coroutine keeps its promise alive until it completes. The other reference is held
by the simple_task that is the return value of the coroutine function.

std::mutex m_mutex;
std::experimental: :coroutine_handle<> m_waiting{ nullptr };
simple_promise_result_holder<T> m_holder;

We need a mutex to protect the m_waiting variable so it can be updated atomically with
respect to state changes. And of course we have the object that holds the result of the
coroutine (successful completion result or an exception).

using Promise = simple_promise<T>;
auto as_promise() noexcept

{

return static_cast<Promise*>(this);

}

The simple_promise_base isa CRTP-like type whose derived type is alwaysa simple_
promise<T> . We create a type alias Promise to refer to that full simple_promise type
and a helper function to produce a pointer to that type.

[simple_promise_base reference count methods]

Managing the reference counts is a major hassle, so I'll defer that discussion as well. Neither
the result holder nor the reference count is particularly complicated, but they’re rather
wordy, and there are some subtle parts that deserve closer discussion.

auto get_return_object() noexcept

{

return simple_task<T>(as_promise());

4/8



This produces the simple task thatis the formal return value of the coroutine function.
The caller is expected to co_await this simple task to get the result of the coroutine
function.

std::experimental: :suspend_never initial_suspend() noexcept

{

return {};
}

As I noted, this is a hot-start coroutine, so there is nothing to do at the initial suspension.

template<typename...Args>

void set_value(Argsé&&... args)

' m_holder.set_value(std::forward<Args>(args)...);
}

void unhandled_exception() noexcept

‘ m_holder.unhandled_exception();

}

These are the methods which store the coroutine result in the result holder. Don’t be scared
by the variadic template parameter list for set value . The actual parameter list to set_
value will be either empty (for void ) or a single parameter (for non- void ). We forward
the results into the holder, or if the coroutine function throws an exception, then we capture
it as an exception. We'll look at these more closely when we study the result holder.

auto final_suspend() noexcept

{

[return an awaiter that decrements the reference count
and resumes any awaiting coroutine]

}

One of our earlier improvements was to delay resuming any awaiting coroutines until we
reach the final_suspend . The additional wrinkle here is that when the coroutine reaches
its final suspension point, we decrement the reference count on the promise, which might or
might not trigger destruction of the coroutine state. We’'ll discuss this some more later.

[awaiter support methods]

auto get_awaiter() noexcept

{

[return an awaiter that waits for the coroutine
to complete]

};

5/8



The get awaiter method produces an awaiter that waits for the coroutine to complete and
returns the result (either in the form of a value or an exception). We've basically seen this
before in our result holder , but the wrinkles are slightly different due to our ability to
process move-only types. We'll see more about this later.

template<typename T>
struct simple_promise : simple_promise_base<T>

{
[implement return_value]
+i
template<>
struct simple_promise<void> : simple_promise_base<void>
{
[implement return_void]
}

As I noted earlier, it is not legal for a promise to have both return_value and
return_void , so we have to split them into separate classes. We’ll look at the
implementation later, because there are some annoyances here.

// promise_ptr<T> is a reference-counted
// pointer to a simple_promise<T>
[implement promise_ptr]

}

The promise_ptr is areference-counted pointer to our simple_promise . This class is
basically all-annoying with nothing of interest inside it. I'll defer its implementation to later.

6/8



namespace async_helpers

' template<typename T>
struct simple_task
{
simple_task(details::simple_promise<T>*
initial = nullptr) : promise(initial) {}
void swap(simple_task& other)
{
std::swap(promise, other.promise);
}
auto operator co_await() const
{
return promise->get_awaiter();
)
private:
details::promise_ptr<T> promise;
}
template<typename T>
void swap(simple_task<T>& left, simple_task<T>& right)
{
left.swap(right);
}
}

The simple_task itselfis very simple. It wraps a reference-counted pointer to the
simple_promise and forwardsits co_await operator to the promise’s awaiter. When the
simple_task destructs, the reference in the promise_ptr isreleased, and that takes us

one step closer to the end of the coroutine state. (Of course, if you copy the simple task ,

then the reference count goes up, and you end up extending the lifetime further.)

Half of the code is just there to support ADL swap!
template <typename T, typename... Args>
struct std::experimental::coroutine_traits<

async_helpers::simple_task<T>, Args...>

using promise_type =
async_helpers::details::simple_promise<T>;

+i
Finally, we tell the coroutine infrastructure that if somebody writes

async_helpers::simple_task<T> MyCoroutine()

{

co_return ...;

7/8



then it should use the simple promise to assist with the implementation of the coroutine.

Okay, so that’s it! There’s a lot of paperwork, but the basic idea is that the promise is where

all the action is. The coroutine and the task each have a reference to the promise, and that’s
how the coroutine and the task communicate with each other.

Oh wait, I have a lot of code to fill in. We'll start that next time.

Raymond Chen

Follow

8/8


https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

