
1/2

April 2, 2021

C++ coroutines: Making the promise itself be the shared
state, the inspiration

devblogs.microsoft.com/oldnewthing/20210402-00

Raymond Chen

Earlier, we improved our simple coroutine promise by delaying the resumption of awaiting

coroutines until local variables have destructed. This time, we’ll look at another

improvement.

Recall that our coroutine is structured like this:

 Coroutine state Caller

 bookkeeping

promise holder → result_holder
state

← holder

 stack frame

There are two allocations, one for the coroutine state, and one for the shared state internal to

the result_holder . But what if we put the result_holder shared state inside the

promise? In other words, what if we made the promise be the result_holder shared

state?¹

This trick takes advantage of the fact that you are permitted to suspend in the final_

suspend . This lets you pause the coroutine execution before it gets to the point where it

destroys the coroutine state.

The idea is that we move into the promise object all of the result_holder shared state,

including the reference count hiding inside the shared_ptr .

Let’s make the original diagram a bit more honest about the shared pointer control block.

Recall that a shared_ptr is a pair of pointers, one to a control block and one to the shared

data, and the control block consists of two reference counts, one for strong references and

one for weak references.

https://devblogs.microsoft.com/oldnewthing/20210402-00/?p=105047
https://devblogs.microsoft.com/oldnewthing/20210331-00/?p=105028

2/2

 Coroutine state Caller

 bookkeeping

promise

holder →
→

refcounts
result_holder

state

←
←

holder

 stack frame

What we’re doing is moving the shared pointer control block and the shared state into the

promise.

 Coroutine state Caller

 bookkeeping

promise

refcount ← holder

result_holder
state

 stack frame

We don’t need to support weak references at all, so we are down to just one reference count.

A running coroutine has a reference to its own state, and any outstanding holder objects

also have a reference to the coroutine state. Only when all references go away do we destroy

the coroutine state.

We’re going to have to rewrite a bunch of stuff basically from scratch, seeing as we’re

abandoning the entire shared_ptr model that we had been using up until now. Let’s hope

it’s worth it.

Bonus chatter: I figured I’d do the whole shared_ptr thing first, since it makes the

several-week-long path to this point easier to follow. If I had started directly with the “result

holder state embedded in the coroutine state”, it would probably have been too confusing.

¹ Thanks to Gor Nishanov for providing this inspiration.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

