
1/2

March 1, 2021

Creating a co_await awaitable signal that can be awaited
multiple times, part 1

devblogs.microsoft.com/oldnewthing/20210301-00

Raymond Chen

C++/WinRT asynchronous activities can be awaited only once. This is consistent with their

intended usage pattern, which is for an application to start the activity, co_await the

result, and then continue.

But maybe you want something like a Win32 event, where any number of people can

co_await the event, and then once it is signaled, all the awaiters are resumed.

Well, an easy way to do this is simply to have a Win32 event!

struct awaitable_event

{

 void set() const noexcept

 { SetEvent(os_handle()); }

 auto operator co_await() const noexcept

 { return winrt::resume_on_signal(os_handle()); }

private:

 HANDLE os_handle() const noexcept

 { return handle.get(); }

 winrt::handle handle{

 winrt::check_pointer(CreateEvent(nullptr,

 /* manual reset */ true, /* initial state */ false,

 nullptr)) };

};

This class is just a wrapper around a Win32 manual-reset event handler. You can call the

set method to set the event, and you can co_await it to wait for the event.

The traditional way of supporting co_await is to implement the trio of methods await_

ready , await_suspend , and await_resume . But another way is to define the

co_await operator so it returns an awaiter. We implement our custom co_await operator

https://devblogs.microsoft.com/oldnewthing/20210301-00/?p=104914
https://devblogs.microsoft.com/oldnewthing/20210226-00/?p=104911
https://devblogs.microsoft.com/oldnewthing/20191218-00/?p=103221

2/2

by propagating the awaiter returned by resume_on_signal . Basically, awaiting the

awaitable_event is the same as awaiting a call of resume_on_signal with the

hidden handle.

For simple scenarios, this might be all you need. You can define a global awaitable_

event and have as many people as you like co_await it.

If you want the object not to have static storage duration (say, because it’s a member of

another class which is dynamically-allocated), then you will encounter lifetime issues because

you can’t destruct the awaitable_event while somebody else is still awaiting it.

We’ll continue investigating this issue next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20210302-00/?p=104918
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

