
1/3

February 10, 2021

The COM static store, part 3: Avoiding creation of an
expensive temporary when setting a singleton

devblogs.microsoft.com/oldnewthing/20210210-06

Raymond Chen

Last time, we looked at one way to avoid a race condition when initializing a singleton in the

COM static store. But it did create the possibility of creating an object that might be thrown

away, and that could be a problem if the object is expensive to construct, or if other

circumstances prevent you from creating more than one of those objects.

In that case, you can expand the lock to cover the construction of the Thing , and construct

it only if you’re sure you’re going to need it.

Thing GetSingletonThing()

{

 auto props = CoreApplication::Properties();

 if (auto found = props.TryLookup(L"Thing")) {

 return found.as<Thing>();

 }

 auto guard = std::lock_guard(m_lock);

 if (auto found = props.TryLookup(L"Thing")) {

 return found.as<Thing>();

 }

 auto thing = MakeAThing();

 props.Insert(L"Thing", thing);

 return thing;

}

This avoids the creation of a throwaway Thing , but it does come at a cost: Since the Thing

is created under the lock, its constructor is at risk of deadlocking if it acquires its own locks or

performs cross-thread operations.

Suppose there’s another lock L, and the caller of GetSingletonThing owns that lock. The

GetSingletonThing function sees that there is no Thing yet, so it takes its own private

lock, and then constructs a new Thing . If the Thing constructor also attempts to acquire

lock L, and the lock L is non-recursive, then you have recursive acquisition of L, which is

formally undefined behavior.

Even if the lock L allows recursive acquisition, you can still deadlock:

https://devblogs.microsoft.com/oldnewthing/20210210-06/?p=104839
https://devblogs.microsoft.com/oldnewthing/20210209-00/?p=104835

2/3

Thread 1 Thread 2

Acquire lock L Call GetSingletonThing

Call GetSingletonThing Object doesn’t exist yet

Object doesn’t exist yet Acquire lock m_lock

Wait for lock m_lock Object still doesn’t exist yet

 Construct a new Thing

 Wait for lock L

Here we hit a classic deadlock, where each thread holds one lock and is waiting for the other

one.

But even if there is no lock L, you can still run into problems if the construction of Thing

requires cross-thread operations.

Thread 1 Thread 2

 Call GetSingletonThing

Call GetSingletonThing Object doesn’t exist yet

Object doesn’t exist yet Acquire lock m_lock

Wait for lock m_lock Object still doesn’t exist yet

 Construct a new Thing

 Send a request to Thread 1 to do some work

This time, Thread 2 is waiting for Thread 1 to do some work so it can finish constructing the

Thing , but Thread 1 cannot do that work because it is waiting for the lock that protects

Thing construction.

I’ve seen all of these types of deadlocks in production code. They hit rarely, but when they do,

everybody has a bad day. Resolving the problem can be complicated because the locks or

cross-thread operations are deeply embedded in the architecture, and a lot of refactoring has

to be done to avoid dangerous operations while holding a lock.

So yeah, be extremely mindful about what you do while holding a lock. Don’t call out to

foreign code while holding a lock.

3/3

Okay, enough about deadlocks. We’ll look at some ways of optimizing the COM singleton

pattern next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

