How do | protect myself against a COM call that can
hang? I’m already running the server out-of-process.

=. devblogs.microsoft.com/oldnewthing/20210122-00

January 22, 2021

-
Raymond Chen

Say you invoke a cross-process COM method, and then you decide to cancel it, say, because
it’s taking too long.

What you definitely don’t want to do is call TerminateThread . That way lies madness.

What you can do is enable call cancellation by calling CoEnableCallCancellation ,then
make the potentially-hanging cross-process COM method call, and then after the call returns,
call CobDisableCallCancellation to return things to the way they were.

Meanwhile, you can set a timer, and if the timer fires, the handler can call CoCancelcall
with the thread ID of the thread that is making the potentially-hanging cross-process COM
method call. If the potentially-hanging cross-process COM method call returns, then cancel
the timer, since you don’t need it any more.

But wait, the documentation for the ICancelMethodCalls: :Cancel method says, “The
behavior of the cancel object on receiving a cancel request is entirely at the discretion of the
implementer.” What if the server never calls CoTestCancel , or it pointedly ignores cancel

requests? Is this whole exercise pointless?

While it’s true that the Cancel method could do whatever the implementation wants, it’s
also the case that CoGetCancelObject will return a standard cancellation object for a
cross-process call. And the system provides that implementation.

The system implementation issues a cancel request to the remote process and waits up to the
specified timeout for the remote process to complete the call. Issuing the cancel request is
what makes CoTestCancel report that a cancellation was requested, and if you're lucky, the
remote process will abandon whatever it was doing and return back to you quickly.

If you're not lucky, the remote process will ignore the cancellation request, and after the
timeout period elapses, the CoCancelCall function will force the original COM method call
to return some cancellation error code, I forget exactly which. (You can pass a time of zero to
issue the cancel request and not bother waiting for any sort of acknowledgement.)

1/2


https://devblogs.microsoft.com/oldnewthing/20210122-00/?p=104750
https://docs.microsoft.com/en-us/windows/win32/api/objidl/nf-objidl-icancelmethodcalls-cancel

If the remote server never calls CoTestCancel , that’s fine. The server just keeps on going,
unaware that its caller has given up waiting for the result.

Supplementary reading: Ready... cancel... wait for it!

Bonus chatter: There is a race condition if the timer fires before your original thread can
manage to initiate the call at all. In that case, you'll try to cancel a nonexistent operation. You
probably want to wait a little while and retry the cancellation, in the hope that the main
thread has finally gotten around to issuing the call that you are trying to cancel.

What I do is schedule a recurring timer, and each time the timer fires, attempt to cancel.
Eventually, one of them will succeed, and then the main thread can cancel the periodic timer.
Even after the successful cancellation, I keep cancelling, because the main thread might be
performing a series of operations, and I need to cancel all of them.

Raymond Chen

Follow

2/2


https://devblogs.microsoft.com/oldnewthing/20110204-00/?p=11583
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

