
1/5

January 8, 2021

The case of the crash during the release of an object
from an unloaded DLL during apartment rundown

devblogs.microsoft.com/oldnewthing/20210108-00

Raymond Chen

A Windows component was experiencing a crash in its service. Here’s the stack trace:

Call Site

ntdll!RtlUnhandledExceptionFilter2+0x364

KERNELBASE!UnhandledExceptionFilter+0x1f1

ntdll!RtlpThreadExceptionFilter+0x65

ntdll!RtlUserThreadStart$filt$0+0x76

ntdll!__C_specific_handler+0x96

ntdll!RtlpExecuteHandlerForException+0xf

ntdll!RtlDispatchException+0x21c

ntdll!KiUserExceptionDispatch+0x2e

combase!CStdMarshal::DisconnectSrvIPIDs::__l35::
<lambda_03ceb3c306c371a8ea5da27fc98e7b7c>::operator()+0x11

combase!ObjectMethodExceptionHandlingAction<<lambda_03ceb3c306c371a8ea5da27fc98e7b7c>
>+0x2e

combase!CStdMarshal::DisconnectSrvIPIDs+0x3fb

combase!CStdMarshal::DisconnectWorker_ReleasesLock+0x757

combase!CStdMarshal::DisconnectSwitch_ReleasesLock+0x1c

combase!CStdMarshal::DisconnectAndReleaseWorker_ReleasesLock+0x32

combase!COIDTable::ThreadCleanup+0x130

combase!FinishShutdown::__l2::
<lambda_eb459d6b43445c5cc6a7489c5b769eeb>::operator()+0x5

combase!ObjectMethodExceptionHandlingAction<<lambda_eb459d6b43445c5cc6a7489c5b769eeb>
>+0x9

combase!FinishShutdown+0x78

combase!NAUninitialize+0x5e

combase!ApartmentUninitialize+0x177

combase!wCoUninitialize+0x1c4

combase!CoUninitialize+0xeb

svchost!SvcHostMain+0x328

svchost!wmain+0x9

svchost!__wmainCRTStartup+0x74

kernel32!BaseThreadInitThunk+0x14

ntdll!RtlUserThreadStart+0x2b

First let’s understand what the stack is telling us.

https://devblogs.microsoft.com/oldnewthing/20210108-00/?p=104684

2/5

Reading from the bottom, we see that the service host calls CoUninitialize to uninitialize

COM, presumably because the service is shutting down. This goes into combase and it’s

doing a bunch of cleanup work. Eventually, it gets into DisconnectSrvIPIDs .

When you go digging into COM, you’ll run into a bunch of weird acronymy IDs. Here are the

ones you’re most likely to bump into:

Term Meaning

MID Machine identifier

OXID Object exporter identifier

OID Object identifier

IPID Interface pointer identifier

Object exporter is a fancy name for COM apartment.

The tuple of (MID, OXID, OID, IPID) uniquely identify an instance of an interface anywhere

in the known COM universe.

When an apartment is shut down, one of the things that COM needs to do is run down

objects. Running down is just a fancy way of saying “shut down in an organized way”. In this

case, it means that any outstanding clients are disconnected so that they can’t call back into

the object any more. This in turn causes the underlying object to be released, at which point

is is most likely going to destroy itself.

We crashed during this disconnection process. Since we are in RtlUnhandledException‐

Filter2 , this suggests that we are in an exception filter, and the first parameter to the

exception filter is a pointer to an EXCEPTION_POINTERS structure, which is just a pair of

pointers, one to the exception record and one to the context.

We are interested in the context, because that lets us see the underlying exception. How can

we fish it out?

This is a 64-bit process, and the EXCEPTION_POINTERS pointer is the first parameter, so it

came in the rcx register. Let’s see if we can see what the function did with that register:

https://devblogs.microsoft.com/oldnewthing/20060821-17/?p=30033

3/5

ntdll!RtlUnhandledExceptionFilter2:

 mov qword ptr [rsp+10h],rdx

 mov qword ptr [rsp+8],rcx < Went onto the stack

 push rbx

 push rsi

 push rdi

 push r12

 push r13

 push r14

 push r15

 sub rsp,40h

 mov r13,rdx

 mov r14,rcx < Went into the r14 register

 mov rax,qword ptr gs:[60h]

 mov r15,qword ptr [rax+20h]

 xor esi,esi

 test r15,r15

 je ntdll!RtlUnhandledExceptionFilter2+0x39

The value in the rcx register got saved in two places: It went into the home space on the

stack, and it was also stashed into the r14 register.

Let’s see what’s there:

0:000> dps @rsp+40+38+8 L1

000000a5`a7c8e470 000000a5`a7c8df40

0:000> dps @r14 L2

000000a5`a7c8df40 000000a5`a7c8ebb0

000000a5`a7c8df48 000000a5`a7c8e6c0

Reading the disassembly, we see that the stack pointer is adjusted by seven pushes and an

explicit sub rsp, 40h , so we need to add 38h + 40h to the current stack pointer to get

back to what the stack pointer was at the start of the function, and then we can add the offset

of 8 to that result. The value stored there matches what’s in r14 , which is a nice little

confirmation that things are not too far gone.

Dumping the two pointers at r14 gives us the exception record and the context record. Let’s

switch to the context in the context record:

4/5

0:000> .cxr 000000a5`a7c8e6c0

rax=00007fff3a1c4480 rbx=00007fff3a1c4480 rcx=00000285a6c5e6e0

rdx=000000a5a7c8f570 rsi=000000a5a7c8f500 rdi=00007fff40e6c6a8

rip=00007fff40c2f2ca rsp=000000a5a7c8f480 rbp=000000a5a7c8f530

r8=000000a5a7c8f538 r9=0000000000000003 r10=baac1f10365eb170

r11=4201100001040004 r12=0000000000000008 r13=00000285a6c4b708

r14=0000000000000001 r15=deaddeaddeaddead

iopl=0 nv up ei pl zr na po nc

cs=0033 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00010246

combase!CStdMarshal::DisconnectSrvIPIDs::__l35::
<lambda_03ceb3c306c371a8ea5da27fc98e7b7c>::operator()+0x11:

00007fff`40c2f2ca 488b4010 mov rax,qword ptr [rax+10h]
ds:00007fff`3a1c4490=????????????????

0:000>

We are calling the Release method on a COM object because the proxy is disconnecting from

it. (Since this a 64-bit system, the offsets are 08h for AddRef and 10h for Release .)

We can look at the vtable address to see what this object is.

0:000> ln @rax

(00007ff8`1a464480) <Unloaded_windows.serviceframework.widget>+0x14480

As expected, this vtable came from an unloaded module. The system keeps track of the most

recently unloaded modules, but the buffer for the file name is fixed in size (to avoid memory

allocations). If the name of the DLL were reasonably short, it would all fit into the buffer, and

you could use !reload /unl name.dll to tell the debugger to pretend that name.dll

were still in memory so you could resolve addresses within it.

Unfortunately, windows.serviceframework.widgetservice.dll is too long to fit in the

buffer, so its name gets truncated, and the debugger can’t recover it.

We’ll have to resolve the symbol manually¹ using a technique I discussed some time ago:

Loading the module as if were a dump file and fixing up the addresses.

C:\> ntsd -z windows.serviceframework.widgetservice.dll

...

ModLoad: 00000001`80000000 00000001`8001f000
windows.serviceframework.widgetservice.dll

windows_serviceframework_widgetservice!_DllMainCRTStartup:

00000001`80010c70 48895c2408 mov qword ptr [rsp+8],rbx
ss:00000000`00000008=????????????????

0:000> ln 00000001`80000000+14480

(00000001`80014480) windows_serviceframework_widgetservice!winrt::impl::produce

<winrt::Windows::ServiceFramework::WidgetService::implementation::ColorChangedEventArg

winrt::Windows::ServiceFramework::WidgetService::IColorChangedEventArgs>::`vftable'

https://devblogs.microsoft.com/oldnewthing/20131115-00/?p=2653

5/5

Aha, so this object is a ColorChangedEventArgs object, and we see that it is implemented

in C++/WinRT.

Services that are also COM servers use COM custom contexts so they can disconnect all their

objects prior to being unloaded. For this trick to work, all the interfaces they expose to clients

must be marshalable, and the objects themselves must not be free-threaded. If the objects are

free-threaded (also known as agile, short for apartment-agile), then the request for a

marshaler would produce the free-threaded marshaler, which says, “Don’t worry about

marshaling me. You can just take me from any context to any other context without having to

do anything special.” But this is the opposite of what you want with an object provided by a

service DLL, since you want those objects to stay inside the custom context so you can

disconnect them at unload.

C++/WinRT objects are free-threaded by default. This particular component was careful to

mark its main object with the non_agile marker type, thereby preventing it from being

free-threaded. However, it forgot to mark some of its helper classes as non_agile , and it is

one of those helper classes that escaped the custom COM context and therefore escaped

being run down when all objects in the context were disconnected.

The fix was to make another pass through the objects offered by the DLL and make sure all of

the ones used by the service are marked as non-agile. The unit tests for these helper classes

were updated to verify that they are not agile, with the hope that if somebody introduces a

new helper class, they will copy an existing unit test to use as a starting point and therefore

will copy the agility test.

¹ In retrospect, I probably could have done

.reload windows.serviceframework.widgetservice.dll=0x00007ff8`1a450000

to tell the debugger to pretend that a DLL was loaded in memory at a particular address.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20191126-00/?p=103140
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

