
1/4

January 1, 2021

I’d like an IUnknown, I know you have many, I’ll take any
of them

devblogs.microsoft.com/oldnewthing/20210101-00

Raymond Chen

A concrete implementation of a COM object may implement multiple interfaces. If you have a

pointer to the concrete implementation, and you pass to a function that expects an

IUnknown , you will probably get an error complaining that IUnknown is an ambiguous

base, or that there is an ambiguous conversion to IUnknown .

void DoSomething(IUnknown* unk);

class MyClass : public IFred, public IBarney

{

 ...

 void SomeMethod()

 {

 DoSomething(this); // fails to compile

 }

};

using namespace Microsoft::WRL;

class MyWrlClass :

 RuntimeClass<RuntimeClassFlags<ClassicCom>,

 IFred, IBarney>

{

 ...

 void SomeMethod()

 {

 DoSomething(this); // fails to compile

 }

};

The problem is that when you call DoSomething(this) , the compiler doesn’t know whether

you want to pass the IUnknown that is a base class of IFred , or the IUnknown that is a

base class of IBarney .

https://devblogs.microsoft.com/oldnewthing/20210101-00/?p=104639

2/4

What we know and the compiler doesn’t know is that it doesn’t matter which one you pass.

They are functionally equivalent. (The only time you are particular about which one you get is

if you are trying to get the canonical unknown, but that is typically only something needed by

the QueryInterface method.)

The usual solution is to cast the implementation pointer to one of the interfaces that it

unambiguously implements, and then let the compiler convert that interface pointer to

IUnknown . This does require you to know which interfaces the object implements, which

could be a source of fragility if the object gains or loses interfaces over time.

From a code size point of view, you want to choose the interface that is the first base class,

assuming that the first base class is an interface. That way, the conversion is a nop.

 DoSomething(static_cast<IFred>(this));

If you use the WRL template library to create your COM objects, then there’s a handy helper

function: CastToUnknown . This takes the implementation pointer and casts it to

IUnknown , saving you the trouble of having to decide which of the many possible paths to

IUnknown to use. This is a protected method, so you can use it from within the class, but not

from the outside.

class MyWrlClass :

 RuntimeClass<RuntimeClassFlags<ClassicCom>,

 IFred, IBarney>

{

 ...

 void SomeMethod()

 {

 DoSomething(this->CastToUnknown());

 }

};

void SomeFunction(MyWrlClass* p)

{

 // this doesn't compile

 DoSomething(p->CastToUnknown());

}

The call to CastToUnknown from the SomeFunction is disallowed because the CastTo‐

Unknown method is protected.

But you could choose to unprotected it.

3/4

class MyWrlClass :

 RuntimeClass<RuntimeClassFlags<ClassicCom>,

 IFred, IBarney>

{

public:

 using RuntimeClass::CastToUnknown;

 ...

};

The using statement imports the base class’s CastToUnknown method, and since the

using statement is in the public section, the imported function is now public .

But really, the point of this article is to call out the existence of the CastToUnknown method.

It’s really handy when you need it, such as when you want to extend your object’s lifetime:

Callback<ISomething>(

 [lifetime = ComPtr<IUnknown>(this->CastToUnknown())]()

 {

 ...

 });

Unfortunately, it’s still quite a bit of a mouthful. You can factor it out to avoid having to type

the whole thing out all the time.

template<typename T> ComPtr<T> AsComPtr(T* p) { return p; }

Callback<ISomething>(

 [lifetime = AsComPtr(this)]()

 {

 ...

 });

Note that this isn’t quite the same as the previous version because the resulting ComPtr is a

ComPtr<MyWrlClass> rather than a ComPtr<IUnknown> , but that works just as well for

the purpose of extending the object’s lifetime.

WRL was written when the latest version of the C++ language was C++11, so it doesn’t

doesn’t have access to CTAD. If CTAD were around, it could have had a deduction guide:

template<typename T> ComPtr(T*) -> ComPtr<T>;

That would avoid the need for the AsComPtr helper function.

Callback<ISomething>(

 [lifetime = ComPtr(this)]()

 {

 ...

 });

Raymond Chen

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

