
1/4

December 31, 2020

How can I create a non-circular tab order, or some other
type of custom ordering in my Win32 dialog?

devblogs.microsoft.com/oldnewthing/20201231-00

Raymond Chen

Normally, the tab order in a dialog follows a fixed sequence: Hitting the Tab key moves

forward through the sequence, and hitting Shift + Tab moves backward through the

sequence, wrapping around when the beginning or end of the sequence is reached. In other

words, what you have is a circle.

The order is based on the order in which the controls are given in the dialog template, which

need not match the physical layout of the controls. In other words, if you list a control near

the bottom of the dialog ahead of a control near the top, then hitting the Tab key will move

from the bottom control to the top control. This can be handy if you want the tab order to

move vertically through columns, say.

But sometimes a circular order isn’t good enough.

Say you have a dialog box that looks in part like this:

Customer ID: Locate

Name:

Address:

⋮ Change

The idea is that the user enters the customer ID into the edit box, and then clicks the Locate

button. This looks up the customer record, and the user can then use other buttons on the

dialog to view details of the customer or make changes.

Based on end-user feedback, you come to the conclusion that it would be better if tabbing

backward from the Change button went straight to the Customer ID field, rather than to the

Locate button. After all, there’s no point clicking the Locate button without first making a

change to the customer ID.

https://devblogs.microsoft.com/oldnewthing/20201231-00/?p=104627

2/4

You can do this by overriding the tab behavior for the Change button.

3/4

INT_PTR CALLBACK CustomerDlgProc(

 HWND hdlg, UINT message, WPARAM wParam, LPARAM lParam)

{

 switch (message) {

 case WM_INITDIALOG:

 SetWindowSubclass(GetDlgItem(hDlg, IDC_CHANGENAME),
 TabBackwardSubclassProc, 0, 0);

 ... other initialization ...

 return TRUE;

 case ...

 }

 return FALSE;

}

INT_PTR CALLBACK TabBackwardSubclassProc(

 HWND hwnd, UINT message, WPARAM wParam, LPARAM lParam,

 UINT_PTR subclassId, DWORD_PTR)

{

 switch (message) {

 case WM_NCDESTROY:

 RemoveWindowSubclass(hwnd, TabBackwardSubclassProc,

 subclassId);

 break;

 case WM_GETDLGCODE:

 return DefSubclassProc(hwnd, message, wParam, lParam) |

 DLGC_WANTTAB;

 case WM_KEYDOWN:

 if (wParam == VK_TAB) {

 HWND hdlg = GetParent(hwnd);

 if (GetKeyState(VK_SHIFT) < 0) {

 // Tabbing backward - go to the Customer ID.

 HWND tabDestination = GetDlgItem(hdlg,

 IDC_CUSTOMERID);

 SendMessage(hdlg, WM_NEXTDLGCTL,

 (WPARAM)tabDestination, TRUE);

 } else {

 // Do the normal tabbing thing.

 SendMessage(hdlg, WM_NEXTDLGCTL, FALSE, FALSE);

 }

 return 0;

 }

 break;

 case WM_CHAR:

 if (wParam == VK_TAB) return 0;

 break;

 }

4/4

 return DefSubclassProc(hwnd, message, wParam, lParam);

}

During dialog box initialization, we subclass the control for which we want a custom tab

destination. In our case, it’s the Change button.

In the subclass procedure, there is the usual boilerplate about removing the subclass when

the window is destroyed. But the interesting part starts with the WM_ GETDLGCODE message.

As I noted some time ago, the WM_GETDLGCODE message lets you influence the behavior of the

dialog manager. We handle this message by taking the behavior requested by the original

control, and also saying that we want to customize the behavior of the Tab key.

Doing so allows the VK_TAB key to flow into the WM_ KEYDOWN , WM_ KEYUP , and

WM_ CHAR messages.

When a key goes down, we trigger our custom navigation when the Tab key is pressed. If

the Shift key is also pressed, then we use the WM_NEXTDLGCTL message to move focus to an

explicit control: Passing an lParam of TRUE means that we are specifying the window to

go to, and we give it the Customer ID control.

If the Shift key is not pressed, then we pass an lParam of FALSE , meaning “Do default

tab navigation.” Passing FALSE as the wParam means that we should go to the default next

control. (Passing TRUE would request going to the default previous control.)

The last bit of cleanliness is that we need to grab the WM_ CHAR message and swallow the

Tab character, so that the control itself won’t try to respond to it, say, by inserting a tab into

the edit control.

And there you have it. We customized tabbing backward from the Change button in a way

that resulted in a tab order that isn’t circular.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20031126-00/?p=41703
https://devblogs.microsoft.com/oldnewthing/20040802-00/?p=38283
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

