
1/3

December 24, 2020

How can I emulate the
REG_NOTIFY_THREAD_AGNOSTIC flag on systems that
don’t support it? part 4

devblogs.microsoft.com/oldnewthing/20201224-00

Raymond Chen

We continue our exercise of emulating the REG_NOTIFY_THREAD_AGNOSTIC flag by making

the whole thing a coroutine, assuming you’re willing to take the anachronism to an extreme

by using C++20 features in code intended to run on Windows XP.

https://devblogs.microsoft.com/oldnewthing/20201224-00/?p=104599
https://devblogs.microsoft.com/oldnewthing/20201223-00/?p=104584

2/3

auto RegNotifyChangeKeyValueAsync(
 HKEY hkey,
 BOOL bWatchSubtree,
 DWORD dwNotifyFilter,
 HANDLE hEvent)
{
 struct awaiter
 {
 HKEY m_hkey;
 BOOL m_bWatchSubtree;
 DWORD m_dwNotifyFilter;
 HANDLE m_hEvent;
 LONG m_result;
 std::experimental::coroutine_handle<> m_handle;

 bool await_ready() const noexcept { return false; }

 bool await_suspend(std::experimental::coroutine_handle<> handle)
 {
 m_handle = handle;
 if (!QueueUserWorkItem(
 Callback,
 this,
 WT_EXECUTEINPERSISTENTTHREAD)) {
 m_result = static_cast<LONG>(GetLastError());
 return false;
 }
 return true;
 }

 LONG await_ready() const noexcept { return m_result; }

 DWORD CALLBACK Callback(void* param)
 {
 auto self = reinterpret_cast<awaiter*>(param);
 self->m_result = RegNotifyChangeKeyValueArgs(
 self->m_hkey,
 self->m_bWatchSubtree,
 self->m_dwNotifyFilter,
 self->m_hEvent,
 TRUE);
 self->m_handle();
 return 0;
 }
 };

 return awaiter(hkey, bWatchSubtree, dwNotifyFilter, hEvent);
}

The catch here is that the coroutine continues on the persistent thread, and you’re not

supposed to run long operations on the persistent thread, so the caller should probably

resume_background to get onto a non-persistent thread pool thread.

3/3

We can’t do the work ourselves of resuming on a non-persistent thread pool thread, say, by

doing another QueueUserWorkItem , because if the second call fails, we are stuck on the

persistent thread. If we are willing to bump the minimum system requirements to Windows

Vista, we could preallocate the work items and remove the possibility of getting stuck halfway

through.

So let’s go all the way with this absurd exercise, next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

