
1/4

December 7, 2020

Why does CreateWindowEx take the extended style
parameter as its first parameter instead of its last?

devblogs.microsoft.com/oldnewthing/20201207-00

Raymond Chen

Windows 3.0 expanded the Create Window function by adding a new extended style

parameter, resulting in the Create Window Ex function. You would expect that the new

parameter would go at the end of the parameter list, but that’s not where it ended up.

Instead, it became a bonus first parameter.

CreateWindow
(

lpszClass,
 lpszName,
 dwStyle,
 x,
 y,
 cx,
 cy,

hwndParent,
 hMenu,

hInstance,

lpCreatePara
ms
);

CreateWindow
Ex(

dwExStyle,

lpszClass,
 lpszName,
 dwStyle,
 x,
 y,
 cx,
 cy,

hwndParent,
 hMenu,

hInstance,

lpCreatePara
ms
);

Why did the extra parameter go at the start rather than at the end?

If you’re familiar with the __stdcall calling convention, you would know that the

parameters are pushed onto the stack from right to left. Adding a new parameter to the front

would therefore permit the old function to forward to the new function by inserting an extra

parameter on the stack:

https://devblogs.microsoft.com/oldnewthing/20201207-00/?p=104518

2/4

CreateWindow:
 pop eax ; pop return address
 push 0 ; dwExStyle
 push eax ; restore return address
 jmp CreateWindowEx ; continue as if CreateWindowEx

However, this theory doesn’t hold up because Windows 3.0 used the 16-bit Pascal calling

convention, which pushes parameters from left to right.

But you’re close. The calling convention does play a role.

The other half of the puzzle is the in the lParam of the WM_NCCREATE and WM_CREATE

messages. That parameter is a pointer to a CREATESTRUCT structure, which originally

looked like this:

struct tagCREATESTRUCT {
 LPVOID lpCreateParams;
 HINSTANCE hInstance;
 HMENU hMenu;
 HWND hwndParent;
 int cy;
 int cx;
 int y;
 int x;
 LONG style;
 LPCSTR lpszName;
 LPCSTR lpszClass;
} CREATESTRUCT;

Look familiar?

It’s the parameter list of the Create Window function, but backward.

Why is it backward?

Since the Pascal calling convention pushes parameters from left to right, it means that the

first parameter has the highest address, and the last parameter has the lowest address. If you

take all the parameters and treat them as a structure, they end up in reverse order.

And that’s the missing link.

Back in the days of 16-bit Windows, the CREATESTRUCT that was passed to the

WM_NCCREATE and WM_CREATE messages was just a pointer to the “structure” on the stack

formed by all of the parameters.

For backward compatibility, the new dwExStyle structure member needs to go to the end,

so that old code which understood the old structure would have all the old data at the old

offsets.

3/4

struct tagCREATESTRUCT {
 LPVOID lpCreateParams;
 HINSTANCE hInstance;
 HMENU hMenu;
 HWND hwndParent;
 int cy;
 int cx;
 int y;
 int x;
 LONG style;
 LPCSTR lpszName;
 LPCSTR lpszClass;
 DWORD dwExStyle; // Now with extended style support!
} CREATESTRUCT;

Backward compatibility dictates that the new structure member goes at the end, which

means that the corresponding new parameter must go at the beginning.

It’s another example of the lengths that 16-bit Windows went in order to run in a very

memory-constrained system.

Bonus chatter: This means that converting a classic Create Window to the new Create ‐

Window Ex is not a simply matter of inserting a new parameter under the return address. The

return address plus all of the existing parameters need to be popped off, the new parameter

inserted, and then all the parameters and return address pushed back on. Alternatively, the

code could simply have pushed another frame onto the stack:

4/4

HWND CreateWindow(
 LPCSTR lpszClass,
 LPCSTR lpszName,
 DWORD dwStyle,
 int x,
 int y,
 int cx,
 int cy,
 HWND hwndParent,
 HMENU hMenu,
 HINSTANCE hInstance,
 LPVOID lpCreateParams)
{
 return CreateWindowEx(
 0,
 lpszClass,
 lpszName,
 dwStyle,
 x,
 y,
 cx,
 cy,
 hwndParent,
 hMenu,
 hInstance,
 lpCreateParams);
}

The code chose to do the “pop, insert, push” because the C wrapper function to push a new

frame was 59 bytes long, whereas the pop/insert/push mechanism, written in hand-tuned

assembly, was faster and consumed only 32 bytes.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190827-00/?p=102809
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

