
1/4

November 11, 2020

The hidden callout: The destructor
devblogs.microsoft.com/oldnewthing/20201111-00

Raymond Chen

This is a general problem, but I’m going to give a specific example.

C++ standard library collections do not support concurrent mutation. It is the caller’s

responsibility to serialize mutation operations, and to ensure that no mutation occurs at the

same time as any other operation. And the usual way of accomplishing this is to use a mutex

of some kind.

class ThingManager
{
private:
 std::mutex things_lock_;
 std::vector<std::shared_ptr<Thing>> things_;

public:
 void AddThing(std::shared_ptr<Thing> thing)
 {
 std::lock_guard guard(things_lock_);
 things_.push_back(std::move(thing));
 }

 void RemoveThingById(int32_t id)
 {
 std::lock_guard guard(things_lock_);
 auto it = std::find_if(things_.begin(), things_.end(),
 [&](auto&& thing)
 {
 return thing->id() == id;
 });
 if (it != things_.end()) {
 things_.erase(it);
 }
 }
};

The idea here is that you give the Thing Manager a bunch of things, and then you can later

remove them by providing the Thing ‘s ID. Presumably there are also methods to search for

Thing s or to perform some operation across all Thing s, but those are just distractions

https://devblogs.microsoft.com/oldnewthing/20201111-00/?p=104439

2/4

from the exercise.

This particular object wants to support concurrent operation, so it internally uses a mutex to

ensure safe operation.

Now, you can quibble about the use of find_if instead of remove_if , or using a

std::vector instead of a std::map , but let’s set that aside.

The question is: What’s wrong with this code?

I sort of gave it away in the title: We are calling out to external code while holding our lock.

You probably know not to call out to external code when holding an internal lock, and the act

of invoking a method on an object may remind you of that fact. But destructors just run by

themselves. You don’t typically write code the trigger the destruction of an object. The object

just destructs when it destructs.

Removing the shared_ptr<Thing> from our vector could result in the Thing ‘s

destruction if this was the last strong reference to the Thing . And that destructor runs while

the things_lock_ is still locked.

Now things get interesting.

You may not know all that happens inside the Thing destructor. It may have been written

by another team, or by you, six months ago. Or somebody could have derived from Thing

and given you a shared pointer to the derived object.¹ Or you might be given a shared pointer

to a Thing embedded inside a larger object.

Let’s do that thing with the derived type:

3/4

class SuperThing : Thing
{
private:
 ThingManager& manager_;
 int32_t helper_id_ = 0;

public:
 SuperThing(ThingManager& manager) :
 manager_(manager)
 {
 auto helper = std::make_shared<Thing>();
 helper_id_ = helper->id();
 manager_.AddThing(helper);
 }

 ~SuperThing()
 {
 manager_.RemoveThingById(helper_id_);
 }
};

The Super Thing object is itself a Thing , but it also uses a helper thing. At construction, it

creates a helper thing and registers it with the manager, retaining the ID. And at destruction,

it removes its helper thing.

And then this happens:

void test(ThingManager& manager)
{
 auto s = std::make_shared<SuperThing>();
 auto id = s->id();
 manager.AddThing(s);
 s = nullptr;

 manager.RemoveThingById(id);
}

This little test function creates a Super Thing , adds it to the thing manager, and then

immediately removes it.

The Remove Thing By Id function looks for a matching Id and finds it, so it erases the

corresponding Thing from the vector. That erasure destroys the shared_ ptr , and since

this is the last strong reference, the underlying Thing is also destroyed.

This runs the destructor of our Super Thing , which tries to remove its helper Thing . And

that calls back into the ThingManager , which gets stuck trying to acquire a mutex that is

already held (unwittingly, by itself).

This is not a purely theoretical exercise. This sort of thing happens, and it’s a source of bugs.

4/4

Next time, we’ll look at how to address these types of problems.

¹ If you work in Windows, a common scenario for this is that the shared_ptr in the

example above takes the form of a COM reference-counted pointer.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

