
1/3

November 6, 2020

How do I save a C++/WinRT array_view as a com_array?
devblogs.microsoft.com/oldnewthing/20201106-00

Raymond Chen

If you have a Windows Runtime class with a property whose Windows Runtime type is an

array, then the C++/WinRT projection expresses the property setter and getter as follows:

// Set array

void IntArray(winrt::array_view<int32_t const> const& value);

// Get array

winrt::com_array<int32_t> IntArray();

We saw earlier that these correspond to the PassArray and ReceiveArray patterns,

respectively.

How would you implement the backing store for this property?

Well, the first thing to note is that the backing store should not be an array_view , because

an array_view is a non-owning view into somebody else’s data. If your setter saved just the

array_view , then it would be left with a dangling pointer, because the array_view

parameter is valid only for the duration of the call.

You realize that what you want to do is save a copy of the contents of an array_view . One

option is to save it in a com_array , but there is no obvious way to create a com_array that

is a copy of the contents of an array_view , seeing as there’s no constructor that takes an

array_view .

You need to use the two-iterator constructor for com_array . This creates a copy of the

provided range of data and saves it in a com_array .

Similarly, to return the com_array , you need to construct the return value in the same way.

The com_array is not copyable, so you’ll have to use the two-iterator constructor.

https://devblogs.microsoft.com/oldnewthing/20201106-00/?p=104427
https://devblogs.microsoft.com/oldnewthing/20200205-00/?p=103398

2/3

struct Class : ClassT<Class>

{

private:

 winrt::com_array<int32_t> int_array_;

public:

 void IntArray(winrt::array_view<int32_t const> const& value)

 {

 int_array_ = { value.begin(), value.end() };

 }

 auto IntArray()

 {

 return winrt::com_array

 { int_array_.begin(), int_array_.end() };

 }

};

We take advantage of class template argument deduction (CTAD) to avoid having to repeat

the type int32_t when constructing the com_array . The full version would have been

 return winrt::com_array<int32_t>

 { int_array_.begin(), int_array_.end() };

The com_array is not copyable, but it is movable, so if you want to just give it away, you can

std::move it. You don’t want to do that for a property backing store, but maybe it’ll come

in handy in other cases.

If you intend to do something with the backing store beyond simply using it to hold data, you

might want to use a more versatile data structure like a std::vector . Fortunately, a

com_array can construct from a vector, so you can do this:

struct Class : ClassT<Class>

{

private:

 std::vector<int32_t> int_vector_;

public:

 void IntArray(winrt::array_view<int32_t const> const& value)

 {

 int_vector_ = { value.begin(), value.end() };

 }

 auto IntArray()

 {

 return winrt::com_array{ int_vector_ };

 }

};

https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

3/3

Here, we take advantage of a deduction guide (introduced in version 2.0.200601.2) to avoid

having to specialize the winrt::com_array .

Raymond Chen

Follow

https://github.com/microsoft/cppwinrt/releases/tag/2.0.200601.2
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

