
1/3

October 30, 2020

Why am I getting an access violation trying to access a
method on my C++/WinRT object?

devblogs.microsoft.com/oldnewthing/20201030-00

Raymond Chen

A customer had a C++/WinRT program that used the

Windows. Devices. PointOfService. ReceiptPrintJob object to print a receipt on a

point-of-service printer. They wanted to skip five lines, so they did the natural thing:

receiptPrintJob.FeedPaperByLine(5);

This worked great until it didn’t.

On one system, the call to FeedPaperByLine() crashed with a null pointer exception, even

though the receiptPrintJob variable was non-null.

Closer investigation revealed that the problem is that the failing system was running an old

build of Windows 10.

The FeedPaperByLine method was added in Windows 10 Version 1903, but the system in

question was running Windows 10 Version 1809.

Windows Runtime objects are represented by a pointer to their default interface. Any

methods on nondefault interfaces require first obtaining that nondefault interface, and then

calling the method on that other interface.

The FeedPaperByLine method is part of the interface IReceiptPrintJob2 , so calling it

goes like this at the ABI layer:

IReceiptPrintJob2* job2;

receiptPrintJob->QueryInterface(IID_PPV_ARGS(&job2));

HRESULT hr = job2->FeedPaperByLine(5);

job2->Release();

if (FAILED(hr)) throw hresult_error(hr);

If the object doesn’t support the IReceiptPrintJob2 interface, then the QueryInterface

fails, and the output pointer job2 is set to nullptr . The next line then tries to use the null

pointer and crashes.

https://devblogs.microsoft.com/oldnewthing/20201030-00/?p=104409

2/3

For performance reasons, the C++/WinRT library intentionally neglects to throw an

exception when the QueryInterface fails, because that avoids both the code to throw the

exception as well as the code to unwind from the exception. It instead relies on the crash on

the next line.

The C++/WinRT library considers this an acceptable trade-off because the Windows

Runtime metadata says that the interface is indeed supported, so the QueryInterface

should always succeed.¹

The customer’s problem stemmed from running the program on a version of Windows 10

that was older than the version of the SDK that was used to compile the program. They must

have specified their minimum OS version as including an older version of Windows 10

(perhaps by mistake), which puts them into the tricky world of “using a newer SDK but

desiring to run on older versions of the operating system.” In those cases, you need to probe

for features that may not be supported on older systems before trying to use them.

You can do this from the Windows Runtime system by checking for the presence of a

method:

if (ApiInformation.IsMethodPresent(

 winrt::name_of<ReceiptPrintJob>(),

 L"FeedPaperByLine")) {

 receiptPrintJob.FeedPaperByLine(5);

} else {

 // Print five blank lines.

 // Not as smooth, but it works.

 for (int i = 0; i < 5; i++) {

 receiptPrintJob.PrintLine(L"");

 }

}

Or you can do it from the C++/WinRT system by probing for the interface you want:

if (auto job2 = receiptPrintJob.try_as<IReceiptPrintJob2>(); job2) {

 job2.FeedPaperByLine(5);

} else {

 // Print five blank lines.

 // Not as smooth, but it works.

 for (int i = 0; i < 5; i++) {

 receiptPrintJob.PrintLine(L"");

 }

}

This second technique is faster, but it requires you to know which interface contains the

method you are interested in.

¹ It could fail under low memory conditions or if there is a server crash. But if you have low

memory or a server crash, you’re probably not going to be able to recover from that anyway.

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

