
1/4

October 29, 2020

Do any Windows Runtime projections cache nondefault
Windows Runtime interfaces?

devblogs.microsoft.com/oldnewthing/20201029-00

Raymond Chen

Some time ago, I discussed how Windows Runtime language projections call methods on

nondefault interfaces. Do any projections cache nondefault interfaces?

The C++/CX and C++/WinRT projections represent Windows Runtime objects as a

reference-counted pointer to the object’s default interface. As a result, there’s nowhere to

cache the nondefault interfaces, since the only storage available is the pointer itself.¹

The C# and JavaScript projections wrap the Windows Runtime inside native C# and

JavaScript objects, and in that case, there’s plenty of room to do things like cache nondefault

interfaces in that native object.

If C++/CX or C++/WinRT wanted to break the rule that their projections are just wrappers

around a single pointer, they could have made the projection be its own object. One option

would be to have it passed by value:

https://devblogs.microsoft.com/oldnewthing/20201029-00/?p=104406
https://devblogs.microsoft.com/oldnewthing/20200324-00/?p=103586

2/4

class Thing

{

private:

 ComPtr<ABI::IThing> thing;

 ComPtr<ABI::IThing2> mutable thing2;

public:

 // Method on default interface IThing

 void Method1() const

 {

 ThrowIfFailed(thing->Method1());

 }

 // Method on nondefault interface IThing2

 void Method2() const

 {

 // Ignoring thread-safety for expository simplicity

 if (!thing2) {

 ThrowIfFailed(thing->

 QueryInterface(IID_PPV_ARGS(&thing2)));

 }

 ThrowIfFailed(thing2->Method2());

 }

 bool operator==(Thing const& other) const noexcept

 {

 return thing == other.thing;

 }

};

The downside of this implementation is that the object is now larger than a pointer, so it gets

more expensive to pass around. The projection would become very large for a class like

UIElement with seventeen interfaces. If you wanted to copy the cache when the object is

copied, that’s potentially sixteen extra AddRef calls when the parameter is passed. And

regardless, you have up to sixteen extra Release calls when the parameter is destroyed.

Another option is to make the projection similar to the C# and JavaScript projections and

have the projected object be a reference to a hidden wrapper.

3/4

class ThingImpl

{

private:

 ComPtr<ABI::IThing> thing;

 ComPtr<ABI::IThing2> mutable thing2;

public:

 // Method on default interface IThing

 void Method1() const

 {

 ThrowIfFailed(thing->Method1());

 }

 // Method on nondefault interface IThing2

 void Method2() const

 {

 // Ignoring thread-safety for expository simplicity

 if (!thing2) {

 ThrowIfFailed(thing->

 QueryInterface(IID_PPV_ARGS(&thing2)));

 }

 ThrowIfFailed(thing2->Method2());

 }

};

class Thing

{

private:

 std::shared_ptr<ThingImpl> impl;

 IThing* get_raw_pointer() const

 {

 return impl ? impl.get()->thing : nullptr;

 }

public:

 void Method1() const { return impl->Method1(); }

 void Method2() const { return impl->Method2(); }

 bool operator==(Thing const& other) const noexcept

 {

 return get_raw_pointer() == other.get_raw_pointer());

 }

};

In this case, the projected object is just a std::shared_ptr to a shared cache. This copies

relatively quickly, since it’s just bumping a reference count on the control block. The

downside is that it costs an extra allocation each time a new wrapper is created.² (Copying a

wrapper just copies the inner shared_ptr , but creating a new wrapper requires the

creation of a new shared_ptr .)

4/4

C++/CX and C++/WinRT chose to make the projected object be a direct pointer to the

Windows Runtime object’s default interface. It’s smaller, avoids extra allocations, and makes

converting between projected and ABI types simpler. The cost is that members of nondefault

interfaces are more expensive.

¹ Even if the cached interface were derived from the default interface (which doesn’t happen

in the Windows Runtime, but work with me here), you couldn’t “upgrade” the pointer to the

derived interface because you would have no way of knowing later whether that pointer is a

boring default interface or an upgraded cached interface.

² C# (and I’m guessing probably JavaScript) will reuse a wrapper when it needs to wrap a

Windows Runtime object and finds that a wrapper already exists. The C++ projections could

have done this, noting that the lookup table would have to be per-module.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

