
1/2

October 28, 2020

Windows Runtime objects are represented by their
default interface, so choose your default interface wisely

devblogs.microsoft.com/oldnewthing/20201028-00

Raymond Chen

As I noted some time ago, in the Windows Runtime, objects are represented at the ABI by a

pointer to their default interface. The choice of default interface is usually obvious, but on

occasion, the non-obvious choice may be better.

If your runtime object supports only one interface, then you have no choice but to make that

interface the default interface. But if your runtime object supports multiple interfaces, then

you have a choice. For example:

runtimeclass AudioTrack : IMediaTrack
{
 event Windows.Foundation.TypedEventHandler<AudioTrack, AudioTrackOpenedEventArgs>
OpenFailed;

 AudioEncodingProperties GetEncodingProperties();
 MediaPlaybackItem PlaybackItem { get; };
 String Name { get; };
 AudioTrackSupportInfo SupportInfo { get; };
};

As written, the MIDL compiler does the following:

Autogenerates an interface called IAudioTrack to contain the members declared in

the class definition.

Defines the AudioTrack class as implementing the IAudioTrack and

IMediaTrack interfaces.

Marks the IAudioTrack class as the default interface.

As noted above, the default interface is used to represent the object. Method calls on the

default interface will be faster than method calls on non-default interfaces, because methods

on non-default interfaces require a Query Interface to obtain the interface. Therefore, you

should choose your default interface to be one that holds the methods that you anticipate will

https://devblogs.microsoft.com/oldnewthing/20201028-00/?p=104404
https://devblogs.microsoft.com/oldnewthing/20200324-00/?p=103586
https://devblogs.microsoft.com/oldnewthing/20200324-00/?p=103586

2/2

be used the most. If that interface is not the autogenerated interface, you can specify a

custom default interface by putting the word [default] in front of the interface you want

to be the default interface:

runtimeclass AudioTrack : [default] IMediaTrack
{
 event Windows.Foundation.TypedEventHandler<AudioTrack, AudioTrackOpenedEventArgs>
OpenFailed;

 AudioEncodingProperties GetEncodingProperties();
 MediaPlaybackItem PlaybackItem { get; };
 String Name { get; };
 AudioTrackSupportInfo SupportInfo { get; };
};

In this case, the object will be used primarily as a media track, and it is the methods on

IMediaTrack that will get the most exercise. Registering for the OpenFailed event will

probably happen only once, and the support info might never be used at all. It would be

preferable to make the IMediaTrack the default interface, so that the commonly-used

methods are readily available.

Another scenario where you may want to override the MIDL compiler’s choice of default

interface is if your class implements a collection, possibly with an extra method or two. The

object will almost certainly be used as a collection, so you should choose the collection as

your default interface:

runtimeclass PlayerCollection : [default] IVector<Page>,
{
 void MoveToIndex(Player player, Int32 newIndex);
}

This hypothetical Player Collection class implements IVector , so you can do all the

normal vector things with it. But IVector doesn’t support reordering items. That’s why the

Play Collection has a bonus Move To Index method that lets you take an item in the

collection and move it to another position. The class may offer this so that it can provide a

more suitable animation: You could get the same effect by removing the player and then

reinserting it at the desired new index. However, that would result in a delete animation

followed by an insertion animation, rather than a reordering animation.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20200316-00/?p=103564
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

