
1/3

October 20, 2020

How do I get from a file path to the volume that holds it?
devblogs.microsoft.com/oldnewthing/20201020-00

Raymond Chen

Say you have the path to a file and you want to access the volume that the file resides on.

Warning: All error checking is removed for expository purposes.

The first step on our journey is getting from the path to the volume mount point. This tells us

where the root of the volume got inserted into the namespace.

TCHAR volumePath[MAX_PATH]; // for expository purposes
GetVolumePathName(filePath, volumePath, ARRAYSIZE(volumePath));

This information might be useful in its own right, but for us, it’s just a stepping stone to the

next piece of information: The volume name.

TCHAR volumeName[MAX_PATH]; // for expository purposes
GetVolumeNameForVolumeMountPoint(volumePath, volumeName, ARRAYSIZE(volumeName));

The volume name is returned in the form \\?\Volume{guid}\, with a trailing backslash.

Note that this call will fail if the path is not a local drive.

Now things get weird.

If you pass that path to the CreateFile function with the trailing backslash intact, then you

are opening a handle to the root directory of the volume.

If you pass that path to the CreateFile function with the trailing backslash removed, then

you are opening a handle to the volume itself.

Depending on which operation you want to perform on the volume, you either must have or

must not have that trailing backslash.

In our case, we want to open a handle to the volume itself, so we need to remove that trailing

backslash. The call to CreateFile looks like this:

https://devblogs.microsoft.com/oldnewthing/20201020-00/?p=104385

2/3

HANDLE handle = CreateFile(volumeNameWithoutTrailingBackslash,
 0, /* no special access requested */
 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
 nullptr, /* no custom security */
 OPEN_EXISTING,
 FILE_FLAG_BACKUP_SEMANTICS,
 nullptr); /* template */

Volume query operations do not require any specific level of access, so we’ll ask for no special

access. Which is good, because regular non-elevated code doesn’t really have much in the way

of special access to volumes. You won’t able to get GENERIC_ READ , much less

GENERIC_ WRITE . (You’ll be able to get FILE_ READ_ ATTRIBUTES , if that’s any

consolation.)

You also need to request backup semantics in order to open a volume.

We can put all of this together into a function called, say, Get Volume Handle For File . For

RAII, I’m going to use wil.

wil::unique_hfile GetVolumeHandleForFile(PCWSTR filePath)
{
 wchar_t volumePath[MAX_PATH];
 THROW_IF_WIN32_BOOL_FALSE(GetVolumePathName(filePath,
 volumePath, ARRAYSIZE(volumePath)));

 wchar_t volumeName[MAX_PATH];
 THROW_IF_WIN32_BOOL_FALSE(GetVolumeNameForVolumeMountPoint(volumePath,
 volumeName, ARRAYSIZE(volumeName)));

 auto length = wcslen(volumeName);
 if (length && volumeName[length - 1] == L'\\')
 {
 volumeName[length - 1] = L'\0';
 }

 wil::unique_hfile result{ CreateFile(volumeName, 0,
 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
 nullptr, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS, nullptr) };
 THROW_LAST_ERROR_IF(!result);
 return result;
}

Now that you have the volume handle, you can ask the volume for information. We’ll look at

that next time.

Raymond Chen

Follow

https://github.com/microsoft/wil/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

