
1/2

October 16, 2020

Structured binding in C++/WinRT: The key-value pair
devblogs.microsoft.com/oldnewthing/20201016-00

Raymond Chen

Last time, we learned how to add structured binding support to your own types, and noted

that the get functions do not have to return references.

C++/WinRT has something similar to a std::pair : The IKeyValuePair<K, V> , which is

used to represent a single entry in a map. (C++ uses a std::pair for this.)

Since the kvp.Key() and kvp.Value() methods always return by value, it means that

when you use structured binding on an IKeyValuePair , the variables are always copies.

The qualifiers on the auto merely describes how the kvp itself is captured.

IKeyValuePair<hstring, int32_t> kvp;

auto& [key, value] = kvp;

This looks like it’s binding key and value as lvalue references, but it’s not. They are non-

reference variables. That’s because the code expands to

auto& hidden = kvp;

decltype(auto) key = kvp.Key();

decltype(auto) value = kvp.Value();

Since the results stored into key and value don’t depend on how you bound the source,

you may as well bind the hidden variable by reference to avoid an unnecessary copy.

// wasteful copy from kvp to hidden

auto [key, value] = kvp;

// non-copying binding

auto&& [key, value] = kvp;

Bonus chatter: The structured binding of IKeyValuePair comes in particularly handy

when you are iterating over something like an IMap :

for (auto&& [key, value] : map)

{

 // use key and value

}

https://devblogs.microsoft.com/oldnewthing/20201016-00/?p=104371
https://devblogs.microsoft.com/oldnewthing/20201015-00/?p=104369

2/2

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

