
1/2

October 14, 2020

A brief introduction to C++ structured binding
devblogs.microsoft.com/oldnewthing/20201014-00

Raymond Chen

C++17 introduced a feature known as structured binding. It allows a single source object to

be taken apart:

std::pair<int, double> p{ 42, 0.0 };
auto [i, d] = p;
// int i = 42;
// double d = 0.0;

It seems that no two languages agree on what to call this feature. C# calls it deconstructing.

JavaScript calls it destructuring. (Python doesn’t seem to have a specific name for this

concept, although the common case where the source is a list does have the name list

comprehension.) Python calls it unpacking. My guess is that C++ avoided both of these

terms to avoid confusion with the word destructor.

There is a subtlety in the way structured binding works: Binding qualifiers on the auto

apply to how the source is bound, not on how the destination is bound.¹

For example,

auto&& [i, d] = p;

becomes (approximately)¹

If p.get<N> exists If p.get<N> does not exist

auto&& hidden = p;

 decltype(auto) i = p.get<0>();

 decltype(auto) d = p.get<1>();

auto&& hidden = p;

 decltype(auto) i = get<0>(p);

 decltype(auto) d = get<1>(p);

where hidden is a hidden variable introduced by the compiler. The declarations of i and

d are inferred from the get method or free function.²

(In a cruel twist of fate, if hidden is const or a const reference, then that const-ness

propagates to the destinations. But the reference-ness of hidden does not propagate.)

https://devblogs.microsoft.com/oldnewthing/20201014-00/?p=104367
https://en.cppreference.com/w/cpp/language/structured_binding
https://docs.microsoft.com/en-us/dotnet/csharp/deconstruct
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://docs.python.org/3/reference/simple_stmts.html#assignment-statements

2/2

The decltype(auto) means that the reference-ness of the return type is preserved rather

than decayed. If get returns a reference, that reference or qualifier is preserved. This

differs from auto which will decay references to copies.

All of this comes into play when you want to make your own objects available to structured

binding, which we’ll look at next time.

Bonus chatter: There is no way to specify that you want only selected pieces. You must

bind all the pieces.

¹ In reality, the bound variables have underlying type std::tuple_element_t<N, T>

(where N is the zero-based index and T is the type of the source), possibly with references

added. But in practice, these types match the return types of get , so it’s easier just to say

that they come from get .

² My reading of the language specification is that the destination variables are always

references:

[dcl.struct.bind]
 3. … [E]ach vᵢ is a variable of type “reference to Tᵢ” initialized with the initializer, where the

reference is an lvalue reference if the initializer is an lvalue and an rvalue reference otherwise.

and therefore the expansion of the structured binding would be

auto&& i = get<0>(p);
auto&& d = get<1>(p);

However, in practice, the compilers declare the destination variables as matching the return

value of get , as I noted above.

So I must be reading the specification wrong.

(The text was revised for C++20, but even in the revision, it’s still a reference.)

¹ That’s because a structured binding really is a hidden variable plus a bunch of references to

the pieces of that hidden variable. That’s why the qualifiers apply to the hidden variable, not

to the aliases.

Raymond Chen

Follow

https://wg21.link/p1091r3%22
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

