
1/2

October 1, 2020

Bonus operations for C++/WinRT iterators: The IIterable,
and C++/WinRT collections

devblogs.microsoft.com/oldnewthing/20201001-00

Raymond Chen

Last time, we saw that C++/WinRT provides a few bonus operators to the IIterator<T> in

order to make it work a little bit more smoothly with the C++ standard library.

Today we’re going to look at IIterable<T> , which is an interface that says “You can get an

iterator from me.”

These Windows Runtime interfaces correspond to analogous concepts in many programming

languages.

C++/WinRT IIterable<T> IIterator<T>

iterator = o.First();

for (auto&& v : o) ...

C++ begin/end iterator

iterator = begin(o);

for (auto&& v : o) ...

C# IEnumerable<T> IEnumerator<T>

enumerator = o.GetEnumerator();

foreach (var v in o) ...

Java Iterable<T> Iterator<T>

iterator = enumerable.iterator();

for (var v : o) ...

JavaScript @@iterator (unnamed)

iterator = o[Symbol.iterator]();

for (v in o) ...

As I noted in the table above, these iterators are designed primarily for use by ranged for

statements.

https://devblogs.microsoft.com/oldnewthing/20201001-00/?p=104325
https://devblogs.microsoft.com/oldnewthing/20200930-00/?p=104321

2/2

for (auto&& value : collection)
{
 /* do something with value */
}

They can also be used in more general algorithms:

std::vector<int> to_vector(IIterable<int> const& collection)
{
 std::vector<int> v;
 std::copy(begin(collection), end(collection), std::back_inserter(v));
 return v;
}

Here’s a peek behind the scenes: For collections which support a GetAt method (such as

IVector , IVectorView , and IBindableVector), this is implemented by an internal

fast_iterator , and the expansion of the ranged for loop comes out like this:

auto&& range = collection;
auto size = range.Size();
for (uint32_t index = 0; index < size; ++index)
{
 auto&& value = range.GetAt(index);
 /* do something with value */
}

The temporary range is part of the ranged for statement. There are some pre-existing

subtleties here, which I leave you to learn about.

For collections which are not indexable, but which are nevertheless iterable, the code falls

back to the traditional Iterator -based loop:

for (auto iterator = as_cpp_iterator(collection.First()); iterator; ++iterator)
{
 auto&& value = *iterator;
 /* do something with value */
}

That version takes advantage of iterator overloads we saw last time.

But wait, we’re not done yet. There’s a little gotcha here that we’ll look at next time.

Raymond Chen

Follow

https://en.cppreference.com/w/cpp/language/range-for#Temporary_range_expression
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

