
1/4

September 29, 2020

How did we end up parsing Savvyday 29 Oatmeal 94 as
Saturday 29 October 1994?

devblogs.microsoft.com/oldnewthing/20200929-05

Raymond Chen

Some time ago, we learned that the InternetTimeToSystemTime function manages to parse

“Savvyday 29 Oatmeal 94” as “Saturday 29 October 1994”. How did that happen? Is it finding

the date with the shortest English Levenshtein distance?

Nothing that fancy.

Warning: This article discusses implementation details, which are not contractual. The

algorithm is subject to change in the future. The only thing that InternetTimeToSystem‐

Time formally guarantees is that it can parse properly-formatted HTTP timestamps.

The parsing is very simple. The official format for HTTP date strings is

1. DayOfWeek, Day Month Year Hour Minute Second GMT

In practice, not everybody follows the rules, so the parser accepts these three formats:

1. DayOfWeek Day Month Year Hour Minute Second TZ

2. DayOfWeek Month Day Hour Minute Second TZ Year

3. DayOfWeek Month Day Hour Minute Second Year TZ

After discarding non-alphanumerics, the parser takes each word in the input string and

converts it to a number somehow. If it consists of digits, then it’s parsed to a number in the

usual way. If it consists of alphabetics, then it’s parsed to a number by trying to match it

against the list of valid tokens:

DayOfWeek Month TZ

Sun = 0 Jan = 1 Jul = 7 GMT

Mon = 1 Feb = 2 Aug = 8 UTC

Tue = 2 Mar = 3 Sep = 9

https://devblogs.microsoft.com/oldnewthing/20200929-05/?p=104313
https://devblogs.microsoft.com/oldnewthing/20200304-00/?p=103527
https://devblogs.microsoft.com/oldnewthing/20200304-00/?p=103527#comment-136342

2/4

Wed = 3 Apr = 4 Oct = 10

Thu = 4 May = 5 Nov = 11

Fri = 5 Jun = 6 Dec = 12

Sat = 7

If no match is found, then we look for an entry which shares the most initial characters with

the word being parsed. If there is a unique such entry, then the parsed value is as given in the

table. If there is no such entry, or the longest match is not unique, then parsing fails.¹

Since there only one time zone permitted in HTTP time/date strings, all we have to

remember is “Yup, it’s a time zone. There’s a time zone marker here.”

For example, the string “Savvyday” is not in the above table, but it does share the following

prefixes:

Length 1 Length 2

S(un) Sa(t)

S(ep)

The longest match is length 2, and there’s only one such match, so the word “Savvyday” is

parsed as if it were “Sat”.

Similarly, “Oatmeal” has only one match: Oct (length 1).

After everything is parsed into a number, we decide which of the three formats we are

looking at.

If the second word was parsed from digits, then we are in case 1. If the seventh word was

parsed from letters, then we are in case 2. Otherwise, we are in case 3.

Once we’ve decided what case we’re in, we know where the year is. If the caller provided a

two-digit year, upgrade it to a four-digit year.

Finally, we copy the fields into the output structure. If a field is missing, it is taken from the

current date and time.

That’s it. Nothing fancy. The algorithm is optimized for the case where the string follows the

correct format. If you pass something that’s not in the correct format, it does what it can.

Sometimes it even comes up with something vaguely sensible!

3/4

Usually not.²

¹ If you think about it, this can be done very quickly by a simple decision tree:

Character

Result1 2 3

A P Apr

U Aug

D Dec

F E Feb

R Fri

G GMT

J A Jan

U L Jul

N Jun

M A R Mar

Y May

O Mon

N Nov

O Oct

S A Sat

E Sep

U Sun

T H Thu

U Tue

U UTC

W Wed

4/4

² For example, Friday Friday Friday Friday Friday Friday Friday Friday

parses to “day 5 of month 5 year 5, hour 5 minute 5, and 5 seconds” or “May 5, 2005 at

05:05:05 GMT”.

Raymond Chen

Follow

https://www.youtube.com/watch?v=kfVsfOSbJY0
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

