Structured binding may be the new hotness, but we’ll
always have std::tie

B® devblogs.microsoft.com/oldnewthing/20200925-00

September 25, 2020

3
Raymond Chen

C++17 introduced structured binding, which lets you assign an expression to multiple
variables.

auto [a,b] = std::pair(1, "hello");
// int a = 1
// char const* b = "hello"

However, this is for creating new variables to hold the result. If you want to assign the result
to existing variables, then you can use the old standby std::tie .

int a;
char const* b;
std::tie(a, b) = std::pair(1, "hello");

This comes in handy in C++/WinRT if you have a winrt::com _array<T> and you need to
return it in its ABI form of a uint32_t coupled witha T* .

winrt::com_array<int32_t> CalculateResult();

HRESULT GetInt32Array(uint32_t* size, int32_t** value) try
{

*size = 0;

*value = nullptr;

std::tie(*size, *value) = winrt::detach_abi(CalculateResult());
return S_OK;

}

catch (...) { return winrt::to_hresult(); }

When applied toa com_array ,the detach_abi functionreturnsa std::pair
representing the size of the conformant array and a pointer to the start of the array. This is a
form ready to be assigned to the tie of the two output parameters.

The type of the pointer part of the return value of detach abi(com array<T> a) isa
pointer to the C++/WinRT ABI representation of T . Here are some examples:

1/2

https://devblogs.microsoft.com/oldnewthing/20200925-00/?p=104297
https://en.cppreference.com/w/cpp/language/structured_binding

T detach_abi(com_array<T>) returns

int32_t std::pair<uint32_t, int32_t*>

hstring std::pair<uint32_t, void**>

ISomething std::pair<uint32_t, mystery_abi*>

e Ifyouhavea com _array of ascalar type, then you will get a pointer to a conformant
array of that scalar type.

e Ifyouhavea com_array of a string type, then you will get a pointer to a conformant
array of void* .

e Ifyouhavea com_array of areference type, then you will get a pointer to a
conformant array of mystery pointers.

In the last case, you should just treat the resulting pointer as if it were a void** .

HRESULT GetNames(uint32_t* size, HSTRING** value) try
{
*size = 0;
*value = nullptr;
std::tie(*size, reinterpret_cast<void*&>(*value)) =
winrt::detach_abi(CalculateNames());
return S_OK;
}
catch (...) { return winrt::to_hresult(); }
HRESULT GetSomethingArray(uint32_t* size, ISomething*** value) try
{
*size = 0;
*value = nullptr;
std::tie(*size, reinterpret_cast<void*&>(*value)) =
winrt::detach_abi(CalculateSomethings());
return S_OK;
}

catch (...) { return winrt::to_hresult(); }

Note that in both cases we reinterpret-cast the output pointer to just void* . Any pointer
type can be assigned to void* , so we just use that to soak up the C++/WinRT ABI pointer,
without needing to know what it actually is.1

1 The C++/WinRT ABI requires that all data pointers have the same size and representation,
so this sort of type pun is legal from an ABI point of view.

Raymond Chen

Follow

2/2

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

