
1/2

September 25, 2020

Structured binding may be the new hotness, but we’ll
always have std::tie

devblogs.microsoft.com/oldnewthing/20200925-00

Raymond Chen

C++17 introduced structured binding, which lets you assign an expression to multiple

variables.

auto [a,b] = std::pair(1, "hello");

// int a = 1

// char const* b = "hello"

However, this is for creating new variables to hold the result. If you want to assign the result

to existing variables, then you can use the old standby std::tie .

int a;

char const* b;

std::tie(a, b) = std::pair(1, "hello");

This comes in handy in C++/WinRT if you have a winrt::com_array<T> and you need to

return it in its ABI form of a uint32_t coupled with a T* .

winrt::com_array<int32_t> CalculateResult();

HRESULT GetInt32Array(uint32_t* size, int32_t** value) try

{

 *size = 0;

 *value = nullptr;

 std::tie(*size, *value) = winrt::detach_abi(CalculateResult());

 return S_OK;

}

catch (...) { return winrt::to_hresult(); }

When applied to a com_array , the detach_abi function returns a std::pair

representing the size of the conformant array and a pointer to the start of the array. This is a

form ready to be assigned to the tie of the two output parameters.

The type of the pointer part of the return value of detach_abi(com_array<T> a) is a

pointer to the C++/WinRT ABI representation of T . Here are some examples:

https://devblogs.microsoft.com/oldnewthing/20200925-00/?p=104297
https://en.cppreference.com/w/cpp/language/structured_binding

2/2

T detach_abi(com_array<T>) returns

int32_t std::pair<uint32_t, int32_t*>

hstring std::pair<uint32_t, void**>

ISomething std::pair<uint32_t, mystery_abi*>

If you have a com_array of a scalar type, then you will get a pointer to a conformant

array of that scalar type.

If you have a com_array of a string type, then you will get a pointer to a conformant

array of void* .

If you have a com_array of a reference type, then you will get a pointer to a

conformant array of mystery pointers.

In the last case, you should just treat the resulting pointer as if it were a void** .

HRESULT GetNames(uint32_t* size, HSTRING** value) try

{

 *size = 0;

 *value = nullptr;

 std::tie(*size, reinterpret_cast<void*&>(*value)) =

 winrt::detach_abi(CalculateNames());

 return S_OK;

}

catch (...) { return winrt::to_hresult(); }

HRESULT GetSomethingArray(uint32_t* size, ISomething*** value) try

{

 *size = 0;

 *value = nullptr;

 std::tie(*size, reinterpret_cast<void*&>(*value)) =

 winrt::detach_abi(CalculateSomethings());

 return S_OK;

}

catch (...) { return winrt::to_hresult(); }

Note that in both cases we reinterpret-cast the output pointer to just void* . Any pointer

type can be assigned to void* , so we just use that to soak up the C++/WinRT ABI pointer,

without needing to know what it actually is.¹

¹ The C++/WinRT ABI requires that all data pointers have the same size and representation,

so this sort of type pun is legal from an ABI point of view.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

