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Structured binding may be the new hotness, but we’ll
always have std::tie
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C++17 introduced structured binding, which lets you assign an expression to multiple

variables.

auto [a,b] = std::pair(1, "hello");

// int a = 1

// char const* b = "hello"


However, this is for creating new variables to hold the result. If you want to assign the result

to existing variables, then you can use the old standby std::tie .

int a;

char const* b;

std::tie(a, b) = std::pair(1, "hello");


This comes in handy in C++/WinRT if you have a winrt::com_array<T>  and you need to

return it in its ABI form of a uint32_t  coupled with a T* .

winrt::com_array<int32_t> CalculateResult();


HRESULT GetInt32Array(uint32_t* size, int32_t** value) try

{

 *size = 0;

 *value = nullptr;

 std::tie(*size, *value) = winrt::detach_abi(CalculateResult());

 return S_OK;

}

catch (...) { return winrt::to_hresult(); }


When applied to a com_array , the detach_abi  function returns a std::pair

representing the size of the conformant array and a pointer to the start of the array. This is a

form ready to be assigned to the tie of the two output parameters.

The type of the pointer part of the return value of detach_abi(com_array<T> a)  is a

pointer to the C++/WinRT ABI representation of T . Here are some examples:

https://devblogs.microsoft.com/oldnewthing/20200925-00/?p=104297
https://en.cppreference.com/w/cpp/language/structured_binding
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T detach_abi(com_array<T>)  returns

int32_t std::pair<uint32_t, int32_t*>

hstring std::pair<uint32_t, void**>

ISomething std::pair<uint32_t, mystery_abi*>

If you have a com_array  of a scalar type, then you will get a pointer to a conformant

array of that scalar type.

If you have a com_array  of a string type, then you will get a pointer to a conformant

array of void* .

If you have a com_array  of a reference type, then you will get a pointer to a

conformant array of mystery pointers.

In the last case, you should just treat the resulting pointer as if it were a void** .

HRESULT GetNames(uint32_t* size, HSTRING** value) try

{

 *size = 0;

 *value = nullptr;

 std::tie(*size, reinterpret_cast<void*&>(*value)) =

   winrt::detach_abi(CalculateNames());

 return S_OK;

}

catch (...) { return winrt::to_hresult(); }

HRESULT GetSomethingArray(uint32_t* size, ISomething*** value) try

{

 *size = 0;

 *value = nullptr;

 std::tie(*size, reinterpret_cast<void*&>(*value)) =

   winrt::detach_abi(CalculateSomethings());

 return S_OK;

}

catch (...) { return winrt::to_hresult(); }


Note that in both cases we reinterpret-cast the output pointer to just void* . Any pointer

type can be assigned to void* , so we just use that to soak up the C++/WinRT ABI pointer,

without needing to know what it actually is.¹

¹ The C++/WinRT ABI requires that all data pointers have the same size and representation,

so this sort of type pun is legal from an ABI point of view.
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