
1/4

September 24, 2020

Inside C++/WinRT: How does C++/WinRT represent ABI
types?

devblogs.microsoft.com/oldnewthing/20200924-00

Raymond Chen

C++/WinRT offers a high-level interface to the the low-level Windows Runtime ABI

(application binary interface). It does this without any dependency on the Windows header

files, which means that it needs some way to talk about the ABI types without actually using

the ABI types. How does this work?

C++/WinRT sets up a collection of types which run parallel to the ABI types defined in the

system header files. The types are not the same, but they are equivalent at the ABI level,

meaning that they have identical binary representations.

When you work in C++/WinRT, there are three (sometimes four) versions of every type,

listed here in decreasing order of popularity:

C++/WinRT projected types.

C++/WinRT implementation types.

C++/WinRT ABI-equivalent types.

System-defined ABI types. (Not used by C++/WinRT.)

In practice, you will be spending nearly all of your time with C++/WinRT projected types. If

you are implementing C++/WinRT classes, then you will also have to deal with C++/WinRT

implementation types.

But you will rarely have to deal with C++/WinRT ABI-equivalent types or the underlying

system-defined ABI types. Those come into play only when you are interoperating at the ABI

layer, and that’s typically something you let the C++/WinRT library do for you.

But I’m going to discuss it anyway, because you may on occasion find yourself having to work

at the ABI layer.

Here’s how it works for scalar types:

System C++/WinRT

https://devblogs.microsoft.com/oldnewthing/20200924-00/?p=104275

2/4

ABI ABI Projection

BYTE uint8_t

INT16 int16_t

UINT16 uint16_t

INT32 int32_t

UINT32 uint32_t

INT64 int64_t

UINT64 uint64_t

FLOAT float

DOUBLE double

boolean bool

WCHAR char16_t

GUID winrt::guid

enum int32_t

uint32_t

enum

HSTRING void* winrt::hstring

HRESULT int32_t winrt::hresult

For enumerations, the C++/WinRT ABI type is int32_t , unless the enumeration is a flags

enumeration, in which case the C++/WinRT ABI type is uint32_t .

The C++/WinRT ABI structures take the form of structures where each member has its

corresponding C++/WinRT ABI type. For example,

System ABI

struct

{

 INT16 Value1;

 HSTRING Value2;

 SomeEnum Value3;

};

C++/WinRT

ABI

struct

{

 int16_t Value1;

 void* Value2;

 int32_t Value3;

};

3/4

Projection

struct

{

 int16_t Value1;

 hstring Value2;

 SomeEnum Value3;

};

If the structure contains another structure, then the rule is applied recursively.

Finally, C++/WinRT interfaces are represented in the C++/WinRT ABI by a pure virtual

class whose members are the interface methods, but with all parameters converted to their

C++/WinRT ABI types. For example,

System ABI

struct ISomething : ::IInspectable

{

 virtual HRESULT

 Method1(INT32 param1) = 0;

 virtual HRESULT

 Method2(HSTRING* result) = 0;

};

C++/WinRT

ABI

struct ISomething : inspectable_abi

{

 virtual int32_t

 Method1(int32_t param1) = 0;

 virtual int32_t

 Method2(void** result) = 0;

};

Projection

struct ISomething : winrt::IInspectable

{

 void Method1(int32_t param1);

 winrt::hstring Method2();

};

These different versions are placed in separate namespaces.

The System ABI puts metadata-defined types in the ABI namespace. For example,

Windows.Foundation.Point is defined in the System ABI as

ABI::Windows::Foundation::Point . (Metadata types are the types defined in the

.winmd metadata files. Fundamental types like the basic integer types, HSTRING ,

IUnknown , and IInspectable are not defined in metadata and reside in the global

namespace.)

The C++/WinRT ABI puts metadata-defined types in the winrt::impl namespace, often as

anonymous types. You need to know that they exist, and what they look like, but you aren’t

expected to be using them directly.

4/4

The C++/WinRT projection puts metadata-defined types in the winrt namespace. For

example, Windows.Foundation.Point is defined in the C++/WinRT projection as

winrt::Windows::Foundation::Point .

The winrt::impl namespace contains internal implementation details, and that’s where

the abi template type hangs out. Its job is to convert C++/WinRT types into their

corresponding C++/WinRT ABI types. For any projected type T , the type

winrt::impl::abi<T>::type is the corresponding C++/WinRT ABI type. You shouldn’t

be using this template directly, but I’m mentioning it so that when you find yourself single-

stepping through the C++/WinRT library, you’ll know what that weird abi template is.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

