
1/3

September 23, 2020

How to get your C++/WinRT asynchronous operations to
respond more quickly to cancellation, part 3

devblogs.microsoft.com/oldnewthing/20200923-00

Raymond Chen

Back in How to get your C++/WinRT asynchronous operations to respond more quickly to

cancellation, part 2, I introduced a helper function that propagates cancellation of a

coroutine into the coroutines it is itself awaiting, so that the whole thing can cancel faster.

The release of C++/WinRT version 2.0.200917.4 includes a new feature: Automatic

propagation of cancellation. You can read the pull request for a deep dive.

The way it works for you, the application developer, is that you can call the

enable_propagation() method on the cancellation token. If the coroutine is cancelled

while it is busy co_await ing another coroutine, the cancellation of the coroutine is

propagated into the awaited-for coroutine, thereby hastening the death of the outer

coroutine.

For example:

IAsyncAction DoHttpThingAsync()

{

 auto cancellation = co_await get_cancellation_token();

 cancellation.enable_propagation();

 auto result = co_await httpClient.TryGetStringAsync(uri);

 if (result.Succeeded()) {

 DoSomethingWith(result.Value());

 }

}

Thanks to the enable_propagation() , if DoHttpThingAsync is cancelled while awaiting

the result of TryGetStringAsync , the TryGetStringAsync operation is cancelled

immediately rather than waiting for it to complete on its own, thereby avoiding a very

lengthy network timeout.

https://devblogs.microsoft.com/oldnewthing/20200923-00/?p=104261
https://devblogs.microsoft.com/oldnewthing/20200723-00/?p=104000
https://github.com/microsoft/cppwinrt/releases/tag/2.0.200917.4
https://github.com/microsoft/cppwinrt/pull/721

2/3

The enable_propagation() method takes an optional bool parameter which specifies

whether you want to enable cancellation propagation (true , the default value) or disable it

(false). It also returns the previous setting, so you can restore it if you need to.

Cancellation propagation is now built into C++/WinRT, so we don’t need the Make‐

Cancellable helper we saw in Part 2.

What’s more, cancellation propagation supports resume_on_signal and resume_after ,

so you can cancel out of a wait operation. This is important for resume_on_signal : If

you’re cancelling the operation because the kernel object will never be signaled (e.g., because

you realize that the thing you’re waiting for will never happen), you need some way to get the

coroutine to resume (in a canceled state) so it can clean up its resources. Otherwise, the

coroutine will get stuck in a permanently-suspended state and end up leaked.

For compatibility with previous versions of C++/WinRT, automatic cancellation propagation

is disabled by default. You must opt in by calling enable_propagation() .

Bonus chatter: The implementation of cancellation propagation is a little odd because it is

optimized for the case that cancellation never occurs. Most of the expensive work happens

during cancellation, with only a tiny bit of bookkeeping performed at each co_await . I paid

for this extra cost by removing a lock from the co_await path in PR 171.

Bonus bonus chatter: Any awaiter can participate in cancellation propagation by being

convertible to winrt::enable_await_cancellation (typically by inheriting from it)

and implementing the enable_cancellation() method. Here is the breakdown for

C++/WinRT awaitables:

Supports cancellation propagation

Yes No

IAsyncXxx

resume_after

resume_on_signal

apartment_context

resume_background

resume_foreground

thread_pool

wait_for_deferrals

The thread-switching awaitables do not support cancellation propagation because there’s

nowhere to cancel back to. The original thread is long gone. The only way to proceed is to go

forward and resume on the target thread.

Raymond Chen

Follow

https://github.com/microsoft/cppwinrt/pull/717
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

