
1/3

September 21, 2020

Git commit-tree parlor tricks, Part 8: I just rebased my
branch, but now I realize that I should have merged

devblogs.microsoft.com/oldnewthing/20200921-00

Raymond Chen

Suppose you created a feature branch in git and made some changes. Meanwhile, the main

branch has also made some changes:

A M1 M2 master

 F1 F2 feature

From a common ancestor commit A, we create a feature branch and make two commits, F1

and F2. Meanwhile, the master branch has received two commits M1 and M2.

You decide to rebase your topic branch onto the main branch. Many merge conflicts later,

you finish with this:

A M1 M2 master

 F1′ F2′ feature

The resulting graph is now linear, with the original commits A1, M1 and M2, followed by new

commits F1′ and F2′.

And then you realize that what you really meant to do was merge, not rebase. Is there a way

to convert the rebase into a merge without having to go back and deal with all those merge

conflicts again?

Indeed there is.

https://devblogs.microsoft.com/oldnewthing/20200921-00/?p=104245

2/3

We’ve seen something very similar before, when we retroactively converted a squash to a

merge. This is pretty much the same thing: We have a final result, and we want to

manufacture a merge that has the same final result.

git commit-tree HEAD^{tree} -p M2 -p F2 -m comment

Note: If using the Windows cmd command prompt, you need to type

git commit-tree HEAD^^{tree} -p M2 -p F2 -m comment

for reasons discussed earlier.

What we did was manufacture a new commit that contains the same results as F2′, but

assigned it the parents M2 and F2. The first parent is the branch you want to pretend that

you are merging to, and the second parent is the branch you want to pretend that you are

merging from.

A M1 M2 F2′ master

 F1 F2 feature

The output of the git commit-tree command is a commit hash. You can now reset to that

commit, and all will be forgiven.

git reset --soft 〈hash〉

Resetting in soft mode preserves all the changes you may have staged. Those staged changes

are still valid because the starting point hasn’t changed: The commit you are resetting to has

the same tree as the commit you are moving from.

Bonus chatter: If we had swapped the two parent commits, like this:

git commit-tree HEAD^{tree} -p F2 -p M2 -m comment

then the result would have been

A M1 M2 master

 F1 F2 F2′ feature

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190509-00/?p=102485
https://devblogs.microsoft.com/oldnewthing/20060517-00/?p=31173
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

