
1/3

September 10, 2020

The macros for declaring COM interfaces, revisited: C++
version

devblogs.microsoft.com/oldnewthing/20200910-00

Raymond Chen

Last time, we looked at the macros for declaring COM interfaces and how they expand when

compiled for C.

When compiled as C++, the macros do something entirely different.

https://devblogs.microsoft.com/oldnewthing/20200910-00/?p=104203
https://devblogs.microsoft.com/oldnewthing/20200909-00/?p=104198

2/3

/* DECLARE_INTERFACE_IID_(ISample2, ISample, "...") */
struct __declspec(uuid("5675B786-7BAC-4EA2-A020-F4E7A15E2073"))
 __declspec(novtable)
 ISample2 : public ISample
{
 /* BEGIN_INTERFACE */
 virtual void a() {} // only on PowerPC

 // *** IUnknown methods ***
 /* STDMETHOD(QueryInterface)(THIS_ REFIID riid, void **ppv) PURE; */
 virtual __declspec(nothrow) HRESULT __stdcall
 QueryInterface(REFIID riid, void** ppv) = 0;

 /* STDMETHOD_(ULONG,AddRef)(THIS) PURE; */
 virtual __declspec(nothrow) ULONG __stdcall AddRef(void) = 0;

 /* STDMETHOD_(ULONG,Release)(THIS) PURE; */
 virtual __declspec(nothrow) ULONG __stdcall Release(void) = 0;

 // ** ISample methods ***
 /* STDMETHOD(Method1)(THIS) PURE; */
 virtual __declspec(nothrow) HRESULT __stdcall Method1(void) = 0;

 /* STDMETHOD_(int, Method2)(THIS) PURE; */
 virtual __declspec(nothrow) HRESULT __stdcall Method2(void) = 0;

 // *** ISample2 methods ***
 /* STDMETHOD(Method3)(THIS_ int iParameter) PURE; */
 virtual __declspec(nothrow) HRESULT __stdcall Method3(int iParameter) = 0;

 /* STDMETHOD_(int, Method4)(THIS_ int iParameter) PURE; */
 virtual __declspec(nothrow) int __stdcall Method4(int iParameter) = 0;

 /* END_INTERFACE */
};

The DECLARE_ INTERFACE macros declare a structure that consists solely of pure virtual

methods. If you use the DECLARE_ INTERFACE_ version, you can specify a base interface.

You will pretty much always use this two-parameter version, since you need to derive from

IUnknown if nothing else.

The __declspec(uuid(...)) specifier enables the use of __uuidof to auto-generate a

GUID when you write __uuidof(ISample2) . This is very handy for macros like

IID_PPV_ARGS which automatically pass the interface GUID that corresponds to the macro

parameter, thereby avoiding errors due to mismatches.

Normally, C++ objects change identity during construction and destruction, which means

that constructing the interface object involves setting up a vtable filled with __purecall

entries, only to have that vtable be immediately overwritten when the derived class is

https://devblogs.microsoft.com/oldnewthing/20040428-00/?p=39613

3/3

constructed. Similarly, at destruction, the vtable regresses from the derived class’s vtable to

the __purecall vtable when destruction reaches the interface object.

The __declspec(novtable) specifier tells the compiler not to bother setting up the vtable

for this class during construction and destruction, because the class promises not to call any

of its own virtual methods during constructor or destruction. (Vacuously true for interfaces

because they have trivial constructors and destructors.) The novtable specifier avoids the

code needed to set up the vtables as well as not needing to produce a vtable in the first place.

Related: The sad history of Visual Studio’s custom __if_exists keyword.

As we learned last time, the BEGIN_ INTERFACE macro usually does nothing, but on

PowerPC, it generates an extra dummy entry in the vtable for reasons lost to history.

The STDMETHOD macro generates the method declaration. The method is virtual , as you

would expect. It also is marked __declspec(nothrow) , which is a promise that calling the

method will not throw an exception. There is no enforcement of this promise; if you break the

rules and allow an exception to escape, then the behavior is undefined. COM methods are not

allowed to throw exceptions, so this annotation is accurate, assuming everybody plays by the

rules.

Related: The sad history of the C++ throw(…) exception specifier.

The PURE expands to = 0 for C++, which makes it a pure virtual method.

Related: COM interfaces do not implement their own pure virtual methods, even though the

language permits it.

The rest is fairly straightforward. The THIS and THIS_ macros expand to nothing; they

exist to keep C happy.

Every macro in this entire sequence does something, either in C or C++. Well, with the

exception of END_ INTERFACE , which nobody has yet to find a use for. But it’s there just in

case.¹

Next time, we’ll look at the implementation macros.

¹ For example, it might be used to declare an explicitly nonvirtual destructor, should the C++

language someday decide to make destructors virtual by default in polymorphic classes.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20190828-00/?p=102812
https://devblogs.microsoft.com/oldnewthing/20180928-00/?p=99855
https://devblogs.microsoft.com/oldnewthing/20131011-00/?p=2953
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

